Suppr超能文献

神经前体细胞镶嵌性时序变化维持了幼鱼 N. furzeri 的快速大脑生长和神经发生。

Mosaic Heterochrony in Neural Progenitors Sustains Accelerated Brain Growth and Neurogenesis in the Juvenile Killifish N. furzeri.

机构信息

Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France.

Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France.

出版信息

Curr Biol. 2020 Feb 24;30(4):736-745.e4. doi: 10.1016/j.cub.2019.12.046. Epub 2020 Jan 30.

Abstract

Although developmental mechanisms driving an increase in brain size during vertebrate evolution are actively studied, we know less about evolutionary strategies allowing accelerated brain growth. In zebrafish and other vertebrates studied to date, apical radial glia (RG) constitute the primary neurogenic progenitor population throughout life [1]; thus, RG activity is a determining factor of growth speed. Here, we ask whether enhanced RG activity is the mechanism selected to drive explosive growth, in adaptation to an ephemeral habitat. In post-hatching larvae of the turquoise killifish, which display drastic developmental acceleration, we show that the dorsal telencephalon (pallium) grows three times faster than in zebrafish. Rather than resulting from enhanced RG activity, we demonstrate that pallial growth is the product of a second type of progenitors (that we term NGPs for non-glial progenitors) that actively sustains neurogenesis and germinal zone self-renewal. Intriguingly, NGPs appear to retain, at larval stages, features of early embryonic progenitors. In parallel, RGs enter premature quiescence and express markers of astroglial function. Altogether, we propose that mosaic heterochrony within the neural progenitor population might permit rapid pallial growth by safeguarding both continued neurogenesis and astroglial function.

摘要

虽然脊椎动物进化过程中大脑大小增加的发育机制正在被积极研究,但我们对允许加速大脑生长的进化策略知之甚少。在迄今为止研究过的斑马鱼和其他脊椎动物中,顶端放射状胶质细胞(RG)在整个生命过程中构成主要的神经发生祖细胞群体[1];因此,RG 活性是生长速度的决定因素。在这里,我们想知道增强 RG 活性是否是为了适应短暂栖息地而选择的驱动爆炸式增长的机制。在表现出剧烈发育加速的绿松石食蚊鱼孵化后的幼虫中,我们发现背侧端脑(脑皮层)的生长速度比斑马鱼快三倍。我们证明,脑皮层的生长不是由于 RG 活性增强所致,而是源自第二种类型的祖细胞(我们称之为非神经胶质祖细胞,即 NGPs)的产物,它们积极维持神经发生和生殖区自我更新。有趣的是,NGPs 在幼虫阶段似乎保留了早期胚胎祖细胞的特征。与此同时,RG 进入过早的静止状态并表达星形胶质细胞功能的标志物。总之,我们提出,神经祖细胞群体中的镶嵌性异时性可能通过保护持续的神经发生和星形胶质细胞功能来允许快速的脑皮层生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bbc/7040570/506e58081083/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验