BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
J Biol Chem. 2020 Mar 6;295(10):3115-3133. doi: 10.1074/jbc.RA119.012144. Epub 2020 Jan 31.
The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and β-glucuronidase assays and distinct properties Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual -glycan structure consisting of ,'-di--acetyllactose diamine at multiple -linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated -glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.
偶然发现的抗衰老膜蛋白αKlotho(Klotho)在肾脏中高度表达,而小鼠中该基因的缺失导致的表型与慢性肾脏病(CKD)非常相似。Klotho 作为成纤维细胞生长因子 23(FGF23)信号的共受体发挥作用,而其脱落的细胞外结构域,具有糖苷酶活性的可溶性 Klotho(sKlotho),是一种调节肾脏健康的体液因子。CKD 中的低 sKlotho 与疾病进展相关,sKlotho 补充已成为治疗 CKD 的潜在治疗策略。在这里,我们探索了 sKlotho 变体的结构-功能关系和翻译后修饰,以指导未来基于 sKlotho 的治疗方法的设计。CHO(中国仓鼠卵巢)和 HEK(人胚肾)来源的 WT sKlotho 蛋白在 FGF23 共受体和β-葡糖苷酸酶测定中具有不同的活性,并且具有不同的特性;唾液酸化处理高度唾液酸化的 CHO-sKlotho 增加了其共受体活性 3 倍,但仍不如低唾液酸化的 HEK-sKlotho 活跃。MS 和糖肽作图分析表明,HEK-sKlotho 独特地修饰有一种不寻常的 -聚糖结构,由多个β-连接位点的α,α-二-O-乙酰乳糖二胺组成,其中一个位于 Asn-126,紧邻一个假定的 GalNAc 转移基序。定点突变和结构建模分析直接表明聚糖在 Klotho 的蛋白折叠和功能中起作用。此外,将两个保守的糖苷酶催化谷氨酸残基引入 sKlotho 中增强了其葡萄糖醛酸酶活性,但降低了其 FGF23 共受体活性,表明这两个功能可能在结构上是不同的。这些发现为合理设计用于治疗肾脏疾病的药理学增强的 sKlotho 治疗剂提供了机会。