Suppr超能文献

解析犬和猫肠道微生物群中的双歧杆菌种群。

Deciphering the Bifidobacterial Populations within the Canine and Feline Gut Microbiota.

机构信息

Department of Veterinary Medical Science, University of Parma, Parma, Italy.

Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.

出版信息

Appl Environ Microbiol. 2020 Mar 18;86(7). doi: 10.1128/AEM.02875-19.

Abstract

During the course of evolution, dogs and cats have been subjected to extensive domestication, becoming the principal companion animals for humans. For this reason, their health care, including their intestinal microbiota, is considered of considerable importance. However, the canine and feline gut microbiota still represent a largely unexplored research area. In the present work, we profiled the microbiota of 23 feline fecal samples by 16S rRNA gene and bifidobacterial internally transcribed spacer (ITS) approaches and compared this information with previously reported data from 138 canine fecal samples. The obtained data allowed the reconstruction of the core gut microbiota of the above-mentioned samples coupled with their classification into distinct community state types at both genus and species levels, identifying , , and 9 as the main bacterial components of the canine and feline gut microbiota. At the species level, the intestinal bifidobacterial gut communities of dogs and cats differed in terms of both species number and composition, as emphasized by a covariance analysis. Together, our findings show that the intestinal populations of cats and dogs are similar in terms of genus-level taxonomical composition, while at the bifidobacterial species level, clear differences were observed, indicative of host-specific colonization behavior by particular bifidobacterial taxa. Currently, domesticated dogs and cats are the most cherished companion animals for humans, and concerns about their health and well-being are therefore important. In this context, the gut microbiota plays a crucial role in maintaining and promoting host health. However, despite the social relevance of domesticated dogs and cats, their intestinal microbial communities are still far from being completely understood. In this study, the taxonomical composition of canine and feline gut microbiota was explored at genus and bifidobacterial species levels, allowing classification of these microbial populations into distinct gut community state types at either of the two investigated taxonomic levels. Furthermore, the reconstruction of core gut microbiota coupled with covariance network analysis based on bifidobacterial internally transcribed spacer (ITS) profiling revealed differences in the bifidobacterial compositions of canine and feline gut microbiota, suggesting that particular bifidobacterial species have developed a selective ability to colonize a specific host.

摘要

在进化过程中,狗和猫经历了广泛的驯化,成为人类主要的伴侣动物。因此,它们的健康护理,包括肠道微生物群,被认为是非常重要的。然而,犬科和猫科动物的肠道微生物群仍然是一个很大程度上尚未开发的研究领域。在本工作中,我们通过 16S rRNA 基因和双歧杆菌内部转录间隔区(ITS)方法对 23 份猫粪便样本的微生物群进行了分析,并将这些信息与之前报道的 138 份犬粪便样本进行了比较。获得的数据允许对上述样本的核心肠道微生物群进行重建,并将其分类为属和种水平上的不同群落状态类型,确定 、 、 和 9 为犬科和猫科肠道微生物群的主要细菌成分。在种水平上,犬科和猫科肠道双歧杆菌菌群在物种数量和组成上存在差异,协方差分析强调了这一点。总之,我们的研究结果表明,猫和狗的肠道种群在属水平的分类组成上相似,而在双歧杆菌种水平上,观察到明显的差异,表明特定双歧杆菌类群具有宿主特异性定植行为。目前,家养的狗和猫是人类最珍贵的伴侣动物,因此它们的健康和幸福受到关注是很重要的。在这种情况下,肠道微生物群在维持和促进宿主健康方面起着至关重要的作用。然而,尽管家养的狗和猫具有社会相关性,但它们的肠道微生物群落仍然远未被完全理解。在这项研究中,探索了犬科和猫科肠道微生物群的属和双歧杆菌种水平的分类组成,允许将这些微生物种群分类为两个研究分类水平上的不同肠道群落状态类型。此外,基于双歧杆菌内部转录间隔区(ITS)分析的核心肠道微生物群的重建和协方差网络分析揭示了犬科和猫科肠道微生物群中双歧杆菌组成的差异,表明特定的双歧杆菌物种已经发展出一种选择性定植特定宿主的能力。

相似文献

1
Deciphering the Bifidobacterial Populations within the Canine and Feline Gut Microbiota.
Appl Environ Microbiol. 2020 Mar 18;86(7). doi: 10.1128/AEM.02875-19.
2
Disclosing the Genomic Diversity among Members of the Genus of Canine and Feline Origin with Respect to Those from Human.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0203821. doi: 10.1128/aem.02038-21. Epub 2022 Mar 14.
3
Exploring the diversity of the bifidobacterial population in the human intestinal tract.
Appl Environ Microbiol. 2009 Mar;75(6):1534-45. doi: 10.1128/AEM.02216-08. Epub 2009 Jan 23.
4
Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life.
ISME J. 2017 Dec;11(12):2834-2847. doi: 10.1038/ismej.2017.138. Epub 2017 Aug 22.
5
Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features.
Environ Microbiol. 2019 Apr;21(4):1331-1343. doi: 10.1111/1462-2920.14540. Epub 2019 Mar 18.
6
The impact of human-facilitated selection on the gut microbiota of domesticated mammals.
FEMS Microbiol Ecol. 2019 Sep 1;95(9). doi: 10.1093/femsec/fiz121.
7
Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective.
Microb Biotechnol. 2020 Nov;13(6):1708-1732. doi: 10.1111/1751-7915.13656. Epub 2020 Aug 30.
8
Metagenomic Analyses of Bifidobacterial Communities.
Methods Mol Biol. 2021;2278:183-193. doi: 10.1007/978-1-0716-1274-3_15.
9
Early-Life Development of the Bifidobacterial Community in the Infant Gut.
Int J Mol Sci. 2021 Mar 25;22(7):3382. doi: 10.3390/ijms22073382.
10
Evolutionary development and co-phylogeny of primate-associated bifidobacteria.
Environ Microbiol. 2020 Aug;22(8):3375-3393. doi: 10.1111/1462-2920.15108. Epub 2020 Jun 24.

引用本文的文献

2
3
Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations.
Microorganisms. 2024 Sep 4;12(9):1831. doi: 10.3390/microorganisms12091831.
4
Evaluation of corn fermented protein on the fecal microbiome of cats.
J Anim Sci. 2024 Jan 3;102. doi: 10.1093/jas/skae268.
6
Gut Probiotics and Health of Dogs and Cats: Benefits, Applications, and Underlying Mechanisms.
Microorganisms. 2023 Sep 29;11(10):2452. doi: 10.3390/microorganisms11102452.
7
Fecal identification markers impact the feline fecal microbiota.
Front Vet Sci. 2023 Feb 8;10:1039931. doi: 10.3389/fvets.2023.1039931. eCollection 2023.
8
Taxonomic, Genomic, and Functional Variation in the Gut Microbiomes of Wild Spotted Hyenas Across 2 Decades of Study.
mSystems. 2023 Feb 23;8(1):e0096522. doi: 10.1128/msystems.00965-22. Epub 2022 Dec 19.

本文引用的文献

1
Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbe-host co-evolution.
Environ Microbiol. 2019 Oct;21(10):3683-3695. doi: 10.1111/1462-2920.14705. Epub 2019 Jun 20.
3
Dissecting the Evolutionary Development of the Species through Comparative Genomics Analyses.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02806-18. Print 2019 Apr 1.
4
Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features.
Environ Microbiol. 2019 Apr;21(4):1331-1343. doi: 10.1111/1462-2920.14540. Epub 2019 Mar 18.
5
The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets.
PLoS One. 2018 Aug 15;13(8):e0201279. doi: 10.1371/journal.pone.0201279. eCollection 2018.
8
Omics of bifidobacteria: research and insights into their health-promoting activities.
Biochem J. 2017 Dec 6;474(24):4137-4152. doi: 10.1042/BCJ20160756.
9
Glycan Utilization and Cross-Feeding Activities by Bifidobacteria.
Trends Microbiol. 2018 Apr;26(4):339-350. doi: 10.1016/j.tim.2017.10.001. Epub 2017 Oct 28.
10
Bifidobacteria and the infant gut: an example of co-evolution and natural selection.
Cell Mol Life Sci. 2018 Jan;75(1):103-118. doi: 10.1007/s00018-017-2672-0. Epub 2017 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验