Grasselli Giorgio, He Qionger, Wan Vivian, Adelman John P, Ohtsuki Gen, Hansel Christian
Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
Cell Rep. 2016 Mar 22;14(11):2546-53. doi: 10.1016/j.celrep.2016.02.054. Epub 2016 Mar 10.
The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2(-/-) mice) and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity-by altering the Purkinje cell output-may be crucial to cerebellar information storage and learning.
内在兴奋性的可塑性已在多种类型的神经元中得到描述,但非突触机制在脑可塑性和学习中的意义仍不清楚。小脑浦肯野细胞是抑制性神经元,它们以高频自发发放动作电位,并通过在突触激活时产生特征性的尖峰爆发-暂停序列来调节其在小脑核中的靶细胞的活动。通过对小鼠浦肯野细胞进行膜片钳记录,我们发现去极化触发的内在可塑性增强了尖峰发放并缩短了尖峰暂停的持续时间。缺乏SK2型钾通道的小鼠(SK2(-/-)小鼠)以及在使用SK通道阻滞剂蜂毒明肽的阻断实验中均不存在暂停可塑性,而加入蜂毒明肽则模拟了暂停减少。我们的研究结果表明,尖峰暂停可以通过一种依赖于活动的、完全非突触的、依赖于SK2通道的机制来调节,并表明暂停可塑性——通过改变浦肯野细胞的输出——可能对小脑信息存储和学习至关重要。