Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China.
Anal Chem. 2021 Jun 1;93(21):7635-7646. doi: 10.1021/acs.analchem.1c00312. Epub 2021 May 20.
Multiplex separation of mixed biological samples is essential in a considerable portion of biomedical research and clinical applications. An automated and operator-independent process for the separation of samples is highly sought after. There is a significant unmet need for methods that can perform fractionation of small volumes of multicomponent mixtures. Herein, we design an integrated chip that combines acoustic and electric fields to enable efficient and label-free separation of multiple different cells and particles under flow. To facilitate the connection of multiple sorting mechanisms in tandem, we investigate the electroosmosis (EO)-induced deterministic lateral displacement (DLD) separation in a combined pressure- and DC field-driven flow and exploit the combination of the bipolar electrode (BPE) focusing and surface acoustic wave (SAW) sorting modules. We successfully integrate four sequential microfluidic modules for multitarget separation within a single platform: (i) sorting particles and cells relying on the size and surface charge by adjusting the flow rate and electric field using a DLD array; (ii) alignment of cells or particles within a microfluidic channel by a bipolar electrode; (iii) separation of particles based on compressibility and density by the acoustic force; and (iv) separation of viable and nonviable cells using dielectric properties via the dielectrophoresis (DEP) force. As a proof of principle, we demonstrate the sorting of multiple cell and particle types (polystyrene (PS) particles, oil droplets, and viable and nonviable yeast cells) with high efficiency. This integrated microfluidic platform combines multiple functional components and, with its ability to noninvasively sort multiple targeted cells in a label-free manner relying on different properties, is compatible with high-definition imaging, showing great potential in diverse diagnostic and analysis applications.
在相当一部分生物医学研究和临床应用中,混合生物样本的多重分离是必不可少的。人们迫切需要一种自动化且无需操作人员干预的样品分离过程。目前,人们非常需要能够对小体积多组分混合物进行分级分离的方法。在此,我们设计了一种集成芯片,该芯片结合了声波和电场,可在流动条件下实现多种不同细胞和颗粒的高效、无标记分离。为了便于串联连接多个分选机制,我们研究了在组合压电和直流场驱动流中电渗流(EO)诱导的确定性侧向位移(DLD)分离,并利用双极电极(BPE)聚焦和表面声波(SAW)分选模块的组合。我们成功地在单个平台内集成了四个用于多目标分离的微流控模块:(i)通过调整流速和电场,利用 DLD 阵列根据尺寸和表面电荷对颗粒和细胞进行分选;(ii)通过双极电极对微流道中的细胞或颗粒进行对准;(iii)通过声致压缩和密度分离基于颗粒的可压缩性和密度;(iv)通过介电泳(DEP)力利用介电特性对活细胞和死细胞进行分离。作为原理验证,我们高效地对多种细胞和颗粒类型(聚苯乙烯(PS)颗粒、油滴以及活细胞和死细胞)进行了分选。该集成微流控平台结合了多个功能组件,能够非侵入式地根据不同特性对多个靶向细胞进行无标记分选,与高清晰度成像兼容,在各种诊断和分析应用中具有很大的潜力。