Liu Chi, Kloppenburg Jan, Yao Yi, Ren Xinguo, Appel Heiko, Kanai Yosuke, Blum Volker
Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
Institute of Condensed Matter and Nanoscience, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
J Chem Phys. 2020 Jan 31;152(4):044105. doi: 10.1063/1.5123290.
The Bethe-Salpeter equation (BSE) based on GW quasiparticle levels is a successful approach for calculating the optical gaps and spectra of solids and also for predicting the neutral excitations of small molecules. We here present an all-electron implementation of the GW+BSE formalism for molecules, using numeric atom-centered orbital (NAO) basis sets. We present benchmarks for low-lying excitation energies for a set of small organic molecules, denoted in the literature as "Thiel's set." Literature reference data based on Gaussian-type orbitals are reproduced to about one millielectron-volt precision for the molecular benchmark set, when using the same GW quasiparticle energies and basis sets as the input to the BSE calculations. For valence correlation consistent NAO basis sets, as well as for standard NAO basis sets for ground state density-functional theory with extended augmentation functions, we demonstrate excellent convergence of the predicted low-lying excitations to the complete basis set limit. A simple and affordable augmented NAO basis set denoted "tier2+aug2" is recommended as a particularly efficient formulation for production calculations. We finally demonstrate that the same convergence properties also apply to linear-response time-dependent density functional theory within the NAO formalism.
基于GW准粒子能级的贝塞耳-萨尔皮特方程(BSE)是计算固体光学能隙和光谱以及预测小分子中性激发的一种成功方法。我们在此展示了一种使用数值原子中心轨道(NAO)基组的分子GW+BSE形式的全电子实现。我们给出了一组小分子有机分子低激发能的基准测试,这些分子在文献中被称为“蒂尔组”。当使用与BSE计算输入相同的GW准粒子能量和基组时,基于高斯型轨道的文献参考数据对于分子基准集的重现精度约为一毫电子伏特。对于价相关一致的NAO基组以及具有扩展增强函数的基态密度泛函理论的标准NAO基组而言,我们证明了预测的低激发能向完备基组极限的出色收敛性。推荐一种简单且经济的增强NAO基组“tier2+aug2”作为生产计算的特别有效形式。我们最终证明相同的收敛特性也适用于NAO形式体系内的线性响应含时密度泛函理论。