Suppr超能文献

利用极值事件刻画噪声时间序列。

Using extremal events to characterize noisy time series.

机构信息

Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA.

Biology Department, Duke University, Durham, NC, USA.

出版信息

J Math Biol. 2020 Apr;80(5):1523-1557. doi: 10.1007/s00285-020-01471-4. Epub 2020 Feb 1.

Abstract

Experimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error [Formula: see text] by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that [Formula: see text]-approximates the time series. Based on the merge tree of a continuous function, we define a new object called the normalized branch decomposition, which allows us to compute intervals for any level [Formula: see text]. We show that there is a well-defined total order on these intervals for a single time series, and that it is naturally extended to a partial order across a collection of time series comprising a dataset. We use the order of the extracted intervals in two applications. First, the partial order describing a single dataset can be used to pattern match against switching model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589-1616, 2018), which allows the rejection of a network model. Second, the comparison between graph distances of the partial orders of different datasets can be used to quantify similarity between biological replicates.

摘要

实验时间序列为了解潜在动力系统提供了一个有价值的窗口,时间序列极值(或其导数)的时间包含了有关其结构的信息。然而,时间序列通常包含显著的测量误差。我们描述了一种方法,用于通过一系列区间来描述任何假设测量误差水平的时间序列[公式:见正文],每个区间都保证包含任何[公式:见正文]逼近时间序列的函数的极值。基于连续函数的合并树,我们定义了一个称为归一化分支分解的新对象,它允许我们为任何级别[公式:见正文]计算区间。我们表明,对于单个时间序列,这些区间之间存在一个明确定义的全序,并且可以自然地将其扩展到包含数据集的一系列时间序列的偏序。我们在两个应用程序中使用提取区间的顺序。首先,可以使用描述单个数据集的偏序来与切换模型输出进行模式匹配(Cummins 等人在 SIAM J Appl Dyn Syst 17(2):1589-1616, 2018 中),这允许拒绝网络模型。其次,可以使用不同数据集的偏序图距离之间的比较来量化生物重复之间的相似性。

相似文献

1
Using extremal events to characterize noisy time series.利用极值事件刻画噪声时间序列。
J Math Biol. 2020 Apr;80(5):1523-1557. doi: 10.1007/s00285-020-01471-4. Epub 2020 Feb 1.
3
Attractor Stability in Finite Asynchronous Biological System Models.有限异步生物系统模型中的吸引子稳定性。
Bull Math Biol. 2019 May;81(5):1442-1460. doi: 10.1007/s11538-018-00565-x. Epub 2019 Jan 17.
4
Learning genetic regulatory network connectivity from time series data.从时间序列数据中学习遗传调控网络的连接性。
IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):152-65. doi: 10.1109/TCBB.2009.48.
5
When is a Phylogenetic Network Simply an Amalgamation of Two Trees?当系统发生树网络仅仅是两棵树的合并时会怎样?
Bull Math Biol. 2018 Sep;80(9):2338-2348. doi: 10.1007/s11538-018-0463-x. Epub 2018 Jul 6.
6
Infinitesimal homeostasis in three-node input-output networks.三节点输入输出网络中的无穷小内稳态。
J Math Biol. 2020 Mar;80(4):1163-1185. doi: 10.1007/s00285-019-01457-x. Epub 2020 Jan 9.
9
Distribution and asymptotic behavior of the phylogenetic transfer distance.系统发育转移距离的分布与渐近行为。
J Math Biol. 2019 Jul;79(2):485-508. doi: 10.1007/s00285-019-01365-0. Epub 2019 Apr 29.

本文引用的文献

1
Model Rejection and Parameter Reduction via Time Series.通过时间序列进行模型拒绝与参数约简
SIAM J Appl Dyn Syst. 2018;17(2):1589-1616. doi: 10.1137/17M1134548. Epub 2018 May 31.
2
Combinatorial representation of parameter space for switching networks.交换网络参数空间的组合表示
SIAM J Appl Dyn Syst. 2016;15(4):2176-2212. doi: 10.1137/15M1052743. Epub 2016 Nov 15.
5
Reconciling conflicting models for global control of cell-cycle transcription.协调细胞周期转录全局控制的冲突模型。
Cell Cycle. 2017 Oct 18;16(20):1965-1978. doi: 10.1080/15384101.2017.1367073. Epub 2017 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验