University Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, F-38000 Grenoble, France;
Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom;
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5344-5349. doi: 10.1073/pnas.1813255116. Epub 2019 Feb 28.
The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a two-phase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing's reaction-diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller-Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.
自组织模式的形成是多细胞生物形态发生的关键,尽管目前仍缺乏全面的生物模式形成理论。在这里,我们提出了一个将组织力学与形态发生物的转化和运输相结合的最小模型,以探索图案形成的途径。我们的主动描述将形态发生物的反应和扩散耦合起来,这些反应和扩散会影响细胞分化和组织力学,并与两相渗透弹性流变学相结合,其中一个组织相由渗透弹性细胞网络组成,另一个由渗透的细胞外液组成,细胞外液通过主动运输形态发生物提供反馈。虽然这个模型包含了以前将组织近似为惰性单相介质的理论,如 Turing 的反应扩散模型,但它克服了它们的一些关键限制,允许通过任何两种生化动力学形成图案,这是由于机械诱导的交叉扩散流。此外,我们还描述了一种定性不同的基于对流的 Keller-Segel 不稳定性,它允许在单个形态发生物的情况下形成图案,并且其基本模式图案与组织大小稳健地缩放。我们讨论了这些发现对于组织形态发生的潜在相关性。