Suppr超能文献

因果推断方法。第4部分:实验中的混杂因素。

Methods in causal inference. Part 4: confounding in experiments.

作者信息

Bulbulia Joseph A

机构信息

Victoria University of Wellington, Wellington, New Zealand.

出版信息

Evol Hum Sci. 2024 Sep 27;6:e43. doi: 10.1017/ehs.2024.34. eCollection 2024.

Abstract

Confounding bias arises when a treatment and outcome share a common cause. In randomised controlled experiments (trials), treatment assignment is random, ostensibly eliminating confounding bias. Here, we use causal directed acyclic graphs to unveil eight structural sources of bias that nevertheless persist in these trials. This analysis highlights the crucial role of causal inference methods in the design and analysis of experiments, ensuring the validity of conclusions drawn from experimental data.

摘要

当一种治疗方法和结果存在共同原因时,就会产生混杂偏倚。在随机对照实验(试验)中,治疗分配是随机的,表面上消除了混杂偏倚。在此,我们使用因果有向无环图来揭示这些试验中仍然存在的八种结构性偏倚来源。该分析突出了因果推断方法在实验设计和分析中的关键作用,确保从实验数据得出的结论的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ca3/11658928/6ca0ad311bb3/S2513843X24000343_figAb.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验