Suppr超能文献

走向荒野:来自自然环境的新酵母基因组和用于分析它们的新工具。

Into the wild: new yeast genomes from natural environments and new tools for their analysis.

机构信息

Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) - CONICET/Universidad Nacional del Comahue, Quintral 1250 (8400), Bariloche., Argentina.

Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-CSIC, Calle Catedrático Dr. D. Agustin Escardino Benlloch n°7, 46980 Paterna, Valencia, Spain.

出版信息

FEMS Yeast Res. 2020 Mar 1;20(2). doi: 10.1093/femsyr/foaa008.

Abstract

Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography, especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and analyze genomes of wild yeasts.

摘要

近年来,对野生酵母的基因组研究有了显著增加。这一革命得益于高通量测序技术的进步和对酵母生态学和系统地理学的更好理解,特别是对于具有生物技术重要性的物种。本综述旨在首先介绍可用于酵母基因组生成和分析的新生物信息学工具。我们还评估了工业相关物种(如酿酒酵母)的野生分离株积累的基因组数据,这些数据为进一步研究与发酵工业和机会性发病相关的驯化过程提供了独特的机会。从野生环境中获得的其他不太常见酵母的基因组序列的可用性也大大增加,包括子囊菌门(如汉逊酵母属)和担子菌门(如毕赤酵母属)的代表。在这里,我们回顾了基础研究和应用研究的突出实例,这些实例证明了继续对野生酵母的基因组进行测序和分析的重要性。

相似文献

1
Into the wild: new yeast genomes from natural environments and new tools for their analysis.
FEMS Yeast Res. 2020 Mar 1;20(2). doi: 10.1093/femsyr/foaa008.
3
Genomic and Transcriptomic Basis of Hanseniaspora vineae's Impact on Flavor Diversity and Wine Quality.
Appl Environ Microbiol. 2018 Dec 13;85(1). doi: 10.1128/AEM.01959-18. Print 2019 Jan 1.
7
Genome sequence of Saccharomyces carlsbergensis, the world's first pure culture lager yeast.
G3 (Bethesda). 2014 Feb 27;4(5):783-93. doi: 10.1534/g3.113.010090.
9
Sterol uptake analysis in Saccharomyces and non-Saccharomyces wine yeast species.
FEMS Yeast Res. 2021 Apr 7;21(3). doi: 10.1093/femsyr/foab020.
10
A systems biology perspective of wine fermentations.
Yeast. 2007 Nov;24(11):977-91. doi: 10.1002/yea.1545.

引用本文的文献

2
Exploring adaptation routes to cold temperatures in the Saccharomyces genus.
PLoS Genet. 2025 Feb 19;21(2):e1011199. doi: 10.1371/journal.pgen.1011199. eCollection 2025 Feb.
3
Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.
Appl Microbiol Biotechnol. 2024 Dec 28;108(1):547. doi: 10.1007/s00253-024-13379-w.
6
A Pan-Draft Metabolic Model Reflects Evolutionary Diversity across 332 Yeast Species.
Biomolecules. 2022 Nov 3;12(11):1632. doi: 10.3390/biom12111632.
7
Phylogenomics of a cocoa strain reveals adaptation to a West African fermented food population.
iScience. 2022 Oct 8;25(11):105309. doi: 10.1016/j.isci.2022.105309. eCollection 2022 Nov 18.
8
Origins, evolution, and physiological implications of de novo genes in yeast.
Yeast. 2022 Sep;39(9):471-481. doi: 10.1002/yea.3810. Epub 2022 Aug 24.
9
Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications.
Microorganisms. 2022 Apr 9;10(4):794. doi: 10.3390/microorganisms10040794.
10
The Ecology and Evolution of the Baker's Yeast .
Genes (Basel). 2022 Jan 26;13(2):230. doi: 10.3390/genes13020230.

本文引用的文献

2
Evolution of Ty1 copy number control in yeast by horizontal transfer and recombination.
PLoS Genet. 2020 Feb 21;16(2):e1008632. doi: 10.1371/journal.pgen.1008632. eCollection 2020 Feb.
3
Fermentation innovation through complex hybridization of wild and domesticated yeasts.
Nat Ecol Evol. 2019 Nov;3(11):1576-1586. doi: 10.1038/s41559-019-0998-8. Epub 2019 Oct 21.
5
Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts.
PLoS Biol. 2019 May 21;17(5):e3000255. doi: 10.1371/journal.pbio.3000255. eCollection 2019 May.
6
Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function.
PLoS Genet. 2019 Apr 4;15(4):e1007786. doi: 10.1371/journal.pgen.1007786. eCollection 2019 Apr.
7
CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications.
Microb Cell Fact. 2019 Apr 2;18(1):63. doi: 10.1186/s12934-019-1112-2.
8
Plasmid-Based CRISPR-Cas9 Gene Editing in Multiple Species.
mSphere. 2019 Mar 13;4(2):e00125-19. doi: 10.1128/mSphere.00125-19.
9
OptRAM: In-silico strain design via integrative regulatory-metabolic network modeling.
PLoS Comput Biol. 2019 Mar 8;15(3):e1006835. doi: 10.1371/journal.pcbi.1006835. eCollection 2019 Mar.
10
Hybridization is a recurrent evolutionary stimulus in wild yeast speciation.
Nat Commun. 2019 Feb 25;10(1):923. doi: 10.1038/s41467-019-08809-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验