Suppr超能文献

基于CT的影像组学特征用于临床I期肺腺癌N2疾病风险分层

CT-based radiomics signature for the stratification of N2 disease risk in clinical stage I lung adenocarcinoma.

作者信息

Yang Minglei, She Yunlang, Deng Jiajun, Wang Tingting, Ren Yijiu, Su Hang, Wu Junqi, Sun Xiwen, Jiang Gening, Fei Ke, Zhang Lei, Xie Dong, Chen Chang

机构信息

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.

Department of Thoracic Surgery, Ningbo No.2 Hospital, Chinese Academy of Sciences, Ningbo 315010, China.

出版信息

Transl Lung Cancer Res. 2019 Dec;8(6):876-885. doi: 10.21037/tlcr.2019.11.18.

Abstract

BACKGROUND

Risk stratification of N2 disease is vital for selecting candidates to receive invasive mediastinal staging modalities. In this study, we aimed to stratify the risk of N2 metastasis in clinical stage I lung adenocarcinoma using radiomics analysis.

METHODS

Two datasets of patients with clinical stage I lung adenocarcinoma who underwent lung resection were included (training dataset, 880; validation dataset, 322). Using , 1,078 computed tomography (CT)-based radiomics features were extracted after semi-automated lung nodule segmentation. In order to predict N2 status, a radiomics signature was constructed after selecting the optimal radiomics feature subset by sequentially applying minimum-redundancy-maximum-relevance and least absolute shrinkage and selection operator (LASSO) techniques. Its performance was validated in the validation dataset.

RESULTS

The incidences of N2 metastasis were 8.4% and 7.1% in the training and validation datasets, respectively. Unsupervised cluster analysis revealed that radiomics features significantly correlated with lymph node status and pathological subtypes. For N2 disease prediction, five radiomics features were selected to establish the radiomics signature, which showed a significantly better predictive performance than clinical factors (P<0.001). The area under the receiver operating characteristic curve was 0.81 (0.77-0.86) and 0.69 (0.63-0.75) for radiomics signature and clinical factors, respectively, in the training dataset, and 0.82 (0.71-0.92) and 0.64 (0.52-0.75), respectively, in the validation dataset.

CONCLUSIONS

The established CT-based radiomics signature could stratify the risk of N2 metastasis in clinical stage I lung adenocarcinoma, thus assisting clinicians in making patient-specific mediastinal staging strategy.

摘要

背景

N2期疾病的风险分层对于选择接受侵入性纵隔分期检查的患者至关重要。在本研究中,我们旨在通过放射组学分析对临床I期肺腺癌患者的N2转移风险进行分层。

方法

纳入两个接受肺切除术的临床I期肺腺癌患者数据集(训练数据集,880例;验证数据集,322例)。通过半自动肺结节分割后,提取了1078个基于计算机断层扫描(CT)的放射组学特征。为了预测N2状态,通过依次应用最小冗余最大相关和最小绝对收缩与选择算子(LASSO)技术选择最佳放射组学特征子集后,构建了放射组学特征。其性能在验证数据集中得到验证。

结果

训练数据集和验证数据集中N2转移的发生率分别为8.4%和7.1%。无监督聚类分析显示,放射组学特征与淋巴结状态和病理亚型显著相关。对于N2疾病预测,选择了五个放射组学特征来建立放射组学特征,其预测性能明显优于临床因素(P<0.001)。在训练数据集中,放射组学特征和临床因素的受试者操作特征曲线下面积分别为0.81(0.77 - 0.86)和0.69(0.63 - 0.75),在验证数据集中分别为0.82(0.71 - 0.92)和0.64(0.52 - 0.75)。

结论

所建立的基于CT的放射组学特征可以对临床I期肺腺癌患者的N2转移风险进行分层,从而帮助临床医生制定针对患者的纵隔分期策略。

相似文献

1
CT-based radiomics signature for the stratification of N2 disease risk in clinical stage I lung adenocarcinoma.
Transl Lung Cancer Res. 2019 Dec;8(6):876-885. doi: 10.21037/tlcr.2019.11.18.

引用本文的文献

2
Machine learning-based radiomics for guiding lymph node dissection in clinical stage I lung adenocarcinoma: a multicenter retrospective study.
Transl Lung Cancer Res. 2024 Dec 31;13(12):3579-3589. doi: 10.21037/tlcr-24-668. Epub 2024 Dec 27.
4
PET/CT based cross-modal deep learning signature to predict occult nodal metastasis in lung cancer.
Nat Commun. 2023 Nov 18;14(1):7513. doi: 10.1038/s41467-023-42811-4.
6
Developing a primary tumor and lymph node 18F-FDG PET/CT-clinical (TLPC) model to predict lymph node metastasis of resectable T2-4 NSCLC.
J Cancer Res Clin Oncol. 2023 Jan;149(1):247-261. doi: 10.1007/s00432-022-04545-6. Epub 2022 Dec 24.
7
Feature selection methods and predictive models in CT lung cancer radiomics.
J Appl Clin Med Phys. 2023 Jan;24(1):e13869. doi: 10.1002/acm2.13869. Epub 2022 Dec 17.
8
F-FDG PET/CT radiomics nomogram for predicting occult lymph node metastasis of non-small cell lung cancer.
Front Oncol. 2022 Sep 28;12:974934. doi: 10.3389/fonc.2022.974934. eCollection 2022.
10
Combined model based on enhanced CT texture features in liver metastasis prediction of high-risk gastrointestinal stromal tumors.
Abdom Radiol (NY). 2022 Jan;47(1):85-93. doi: 10.1007/s00261-021-03321-3. Epub 2021 Oct 27.

本文引用的文献

1
Mediastinal staging by videomediastinoscopy in clinical N1 non-small cell lung cancer: a prospective multicentre study.
Eur Respir J. 2017 Dec 21;50(6). doi: 10.1183/13993003.01493-2017. Print 2017 Dec.
2
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
3
A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer.
Clin Cancer Res. 2017 Nov 15;23(22):6904-6911. doi: 10.1158/1078-0432.CCR-17-1510. Epub 2017 Sep 5.
5
Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer.
Cancer Res. 2017 Jul 15;77(14):3922-3930. doi: 10.1158/0008-5472.CAN-17-0122. Epub 2017 May 31.
6
Imaging Phenotyping Using Radiomics to Predict Micropapillary Pattern within Lung Adenocarcinoma.
J Thorac Oncol. 2017 Apr;12(4):624-632. doi: 10.1016/j.jtho.2016.11.2230. Epub 2016 Dec 5.
7
Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art.
Eur J Radiol. 2017 Jan;86:297-307. doi: 10.1016/j.ejrad.2016.09.005. Epub 2016 Sep 10.
8
Predicting Malignant Nodules from Screening CT Scans.
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.
9
Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer.
J Clin Oncol. 2016 Jun 20;34(18):2157-64. doi: 10.1200/JCO.2015.65.9128. Epub 2016 May 2.
10
Association of maximum standardized uptake value with occult mediastinal lymph node metastases in cN0 non-small cell lung cancer.
Eur J Cardiothorac Surg. 2016 Nov;50(5):914-919. doi: 10.1093/ejcts/ezw109. Epub 2016 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验