Suppr超能文献

基于 T2 压脂和弥散加权 MRI 放射组学的乳腺癌前哨淋巴结转移术前预测。

Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI.

机构信息

Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China.

Graduate College, Shantou University Medical College, Shantou, Guangdong, People's Republic of China.

出版信息

Eur Radiol. 2018 Feb;28(2):582-591. doi: 10.1007/s00330-017-5005-7. Epub 2017 Aug 21.

Abstract

OBJECTIVES

To predict sentinel lymph node (SLN) metastasis in breast cancer patients using radiomics based on T-weighted fat suppression (T-FS) and diffusion-weighted MRI (DWI).

METHODS

We enrolled 146 patients with histologically proven breast cancer. All underwent pretreatment T-FS and DWI MRI scan. In all, 10,962 texture and four non-texture features were extracted for each patient. The 0.623 + bootstrap method and the area under the curve (AUC) were used to select the features. We constructed ten logistic regression models (orders of 1-10) based on different combination of image features using stepwise forward method.

RESULTS

For T-FS, model 10 with ten features yielded the highest AUC of 0.847 in the training set and 0.770 in the validation set. For DWI, model 8 with eight features reached the highest AUC of 0.847 in the training set and 0.787 in the validation set. For joint T-FS and DWI, model 10 with ten features yielded an AUC of 0.863 in the training set and 0.805 in the validation set.

CONCLUSIONS

Full utilisation of breast cancer-specific textural features extracted from anatomical and functional MRI images improves the performance of radiomics in predicting SLN metastasis, providing a non-invasive approach in clinical practice.

KEY POINTS

• SLN biopsy to access breast cancer metastasis has multiple complications. • Radiomics uses features extracted from medical images to characterise intratumour heterogeneity. • We combined T -FS and DWI textural features to predict SLN metastasis non-invasively.

摘要

目的

利用基于 T 加权脂肪抑制(T-FS)和弥散加权 MRI(DWI)的放射组学预测乳腺癌患者的前哨淋巴结(SLN)转移。

方法

我们纳入了 146 名经组织学证实的乳腺癌患者。所有患者均接受了预处理 T-FS 和 DWI MRI 扫描。共为每位患者提取了 10962 个纹理和 4 个非纹理特征。采用 0.623+bootstrap 方法和曲线下面积(AUC)选择特征。我们使用逐步向前法基于不同的图像特征组合构建了十个逻辑回归模型(顺序为 1-10)。

结果

对于 T-FS,基于十项特征的模型 10 在训练集中的 AUC 最高为 0.847,在验证集中为 0.770。对于 DWI,基于八项特征的模型 8 在训练集中的 AUC 最高为 0.847,在验证集中为 0.787。对于 T-FS 和 DWI 的联合分析,基于十项特征的模型 10 在训练集中的 AUC 为 0.863,在验证集中为 0.805。

结论

充分利用从解剖和功能 MRI 图像中提取的乳腺癌特异性纹理特征可提高放射组学预测 SLN 转移的性能,为临床实践提供一种非侵入性方法。

关键要点

  • SLN 活检用于评估乳腺癌转移有多种并发症。

  • 放射组学利用从医学图像中提取的特征来描述肿瘤内异质性。

  • 我们联合 T-FS 和 DWI 纹理特征进行非侵入性的 SLN 转移预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验