Zhao Wei, Wu Yuzhi, Xu Ya'nan, Sun Yingli, Gao Pan, Tan Mingyu, Ma Weiling, Li Cheng, Jin Liang, Hua Yanqing, Liu Jun, Li Ming
Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China.
Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
Front Oncol. 2020 Jan 9;9:1485. doi: 10.3389/fonc.2019.01485. eCollection 2019.
Up to 50% of Asian patients with NSCLC have gene mutations, indicating that selecting eligible patients for -TKIs treatments is clinically important. The aim of the study is to develop and validate radiomics-based nomograms, integrating radiomics, CT features and clinical characteristics, to non-invasively predict mutation status and subtypes. We included 637 patients with lung adenocarcinomas, who performed the mutations analysis in the current study. The whole dataset was randomly split into a training dataset ( = 322) and validation dataset ( = 315). A sub-dataset of -mutant lesions ( mutation in exon 19 and in exon 21) was used to explore the capability of radiomic features for predicting mutation subtypes. Four hundred seventy-five radiomic features were extracted and a radiomics sore (R-score) was constructed by using the least absolute shrinkage and selection operator (LASSO) regression in the training dataset. A radiomics-based nomogram, incorporating clinical characteristics, CT features and R-score was developed in the training dataset and evaluated in the validation dataset. The constructed R-scores achieved promising performance on predicting mutation status and subtypes, with AUCs of 0.694 and 0.708 in two validation datasets, respectively. Moreover, the constructed radiomics-based nomograms excelled the R-scores, clinical, CT features alone in terms of predicting mutation status and subtypes, with AUCs of 0.734 and 0.757 in two validation datasets, respectively. Radiomics-based nomogram, incorporating clinical characteristics, CT features and radiomic features, can non-invasively and efficiently predict the mutation status and thus potentially fulfill the ultimate purpose of precision medicine. The methodology is a possible promising strategy to predict mutation subtypes, providing the support of clinical treatment scenario.
高达50%的亚洲非小细胞肺癌患者存在 基因突变,这表明选择合适的患者进行 -TKIs治疗在临床上具有重要意义。本研究的目的是开发并验证基于放射组学的列线图,整合放射组学、CT特征和临床特征,以无创预测 突变状态和亚型。我们纳入了637例肺腺癌患者,这些患者在本研究中进行了 突变分析。整个数据集被随机分为训练数据集( = 322)和验证数据集( = 315)。一个 -突变病变的子数据集(外显子19和外显子21中的 突变)用于探索放射组学特征预测 突变亚型的能力。提取了475个放射组学特征,并在训练数据集中使用最小绝对收缩和选择算子(LASSO)回归构建了一个放射组学评分(R-score)。在训练数据集中开发了一个基于放射组学的列线图,纳入了临床特征、CT特征和R-score,并在验证数据集中进行评估。构建的R-score在预测 突变状态和亚型方面表现出良好的性能,在两个验证数据集中的AUC分别为0.694和0.708。此外,构建的基于放射组学的列线图在预测 突变状态和亚型方面优于单独的R-score、临床特征和CT特征,在两个验证数据集中的AUC分别为0.734和0.757。基于放射组学的列线图,结合临床特征、CT特征和放射组学特征,可以无创且有效地预测 突变状态,从而有可能实现精准医学的最终目标。该方法是预测 突变亚型的一种可能有前景的策略,为临床治疗方案提供支持。