Huang Wen, Yang Zhendong, Kraman Mark D, Wang Qingyi, Ou Zihao, Rojo Miguel Muñoz, Yalamarthy Ananth Saran, Chen Victoria, Lian Feifei, Ni Jimmy H, Liu Siyu, Yu Haotian, Sang Lei, Michaels Julian, Sievers Dane J, Eden J Gary, Braun Paul V, Chen Qian, Gong Songbin, Senesky Debbie G, Pop Eric, Li Xiuling
Department of Electrical and Computer Engineering and Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA.
School of Microelectronics, Soft Membrane Electronic Technology Laboratory, Hefei University of Technology, Hefei, Anhui 230601, China.
Sci Adv. 2020 Jan 17;6(3):eaay4508. doi: 10.1126/sciadv.aay4508. eCollection 2020 Jan.
Monolithic strong magnetic induction at the mtesla to tesla level provides essential functionalities to physical, chemical, and medical systems. Current design options are constrained by existing capabilities in three-dimensional (3D) structure construction, current handling, and magnetic material integration. We report here geometric transformation of large-area and relatively thick (~100 to 250 nm) 2D nanomembranes into multiturn 3D air-core microtubes by a vapor-phase self-rolled-up membrane (S-RuM) nanotechnology, combined with postrolling integration of ferrofluid magnetic materials by capillary force. Hundreds of S-RuM power inductors on sapphire are designed and tested, with maximum operating frequency exceeding 500 MHz. An inductance of 1.24 μH at 10 kHz has been achieved for a single microtube inductor, with corresponding areal and volumetric inductance densities of 3 μH/mm and 23 μH/mm, respectively. The simulated intensity of the magnetic induction reaches tens of mtesla in fabricated devices at 10 MHz.
毫特斯拉到特斯拉级别的单片强磁感应为物理、化学和医疗系统提供了基本功能。当前的设计选项受到三维(3D)结构构建、电流处理和磁性材料集成方面现有能力的限制。我们在此报告,通过气相自卷膜(S-RuM)纳米技术,将大面积且相对较厚(约100至250纳米)的二维纳米膜几何转变为多匝3D空心微管,并通过毛细力对铁磁流体磁性材料进行卷后集成。设计并测试了数百个蓝宝石上的S-RuM功率电感器,其最大工作频率超过500兆赫兹。单个微管电感器在10千赫兹时实现了1.24微亨的电感,相应的面积电感密度和体积电感密度分别为3微亨/平方毫米和23微亨/立方毫米。在10兆赫兹下,制造的器件中磁感应的模拟强度达到数十毫特斯拉。