Davoudiniya Masoumeh, Sanyal Biplab
Department of Physics and Astronomy, Uppsala University Sweden
Nanoscale Adv. 2024 Oct 9;6(24):6278-89. doi: 10.1039/d4na00639a.
Utilizing simulations, we study the spin-dependent electronic transport characteristics within FeGeTe-based van der Waals heterostructures. The electronic density of states for both free-standing and device-configured FeGeTe (F4GT) confirms its ferromagnetic metallic nature and reveals a weak interface interaction between F4GT and PtTe electrodes, enabling efficient spin filtering. The ballistic transport through a double-layer F4GT with a ferromagnetic configuration sandwiched between two PtTe electrodes is predicted to exhibit an impressive spin polarization of 97% with spin-up electrons exhibiting higher transmission probability than spin-down electrons. Moreover, we investigate the spin transport properties of FeGeTe/GaTe/FeGeTe van der Waals heterostructures sandwiched between PtTe electrodes to explore their potential as magnetic tunnel junctions in spintronic devices. The inclusion of monolayer GaTe as a 2D semiconducting spacer between F4GT layers results in a tunnel magnetoresistance of 487% at a low bias and decreases with increasing bias voltage. Overall, our findings underscore the potential of F4GT/GaTe/F4GT heterostructures in advancing spintronic devices based on van der Waals materials.
利用模拟,我们研究了基于FeGeTe的范德华异质结构中自旋相关的电子输运特性。独立的和器件配置的FeGeTe(F4GT)的电子态密度证实了其铁磁金属性质,并揭示了F4GT与PtTe电极之间的弱界面相互作用,从而实现了有效的自旋过滤。预计通过夹在两个PtTe电极之间的具有铁磁配置的双层F4GT的弹道输运将表现出令人印象深刻的97%的自旋极化,自旋向上的电子比自旋向下的电子具有更高的传输概率。此外,我们研究了夹在PtTe电极之间的FeGeTe/GaTe/FeGeTe范德华异质结构的自旋输运特性,以探索它们作为自旋电子器件中的磁性隧道结的潜力。在F4GT层之间包含单层GaTe作为二维半导体间隔层,在低偏压下导致487%的隧道磁电阻,并随着偏压电压的增加而降低。总的来说,我们的研究结果强调了F4GT/GaTe/F4GT异质结构在推进基于范德华材料的自旋电子器件方面的潜力。