Edwardes Moore Esther, Andrei Virgil, Zacarias Sónia, Pereira Inês A C, Reisner Erwin
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal.
ACS Energy Lett. 2020 Jan 10;5(1):232-237. doi: 10.1021/acsenergylett.9b02437. Epub 2019 Dec 10.
Lead halide perovskite solar cells are notoriously moisture-sensitive, but recent encapsulation strategies have demonstrated their potential application as photoelectrodes in aqueous solution. However, perovskite photoelectrodes rely on precious metal co-catalysts, and their combination with biological materials remains elusive in integrated devices. Here, we interface [NiFeSe] hydrogenase from Hildenborough, a highly active enzyme for H generation, with a triple cation mixed halide perovskite. The perovskite-hydrogenase photoelectrode produces a photocurrent of -5 mA cm at 0 V vs RHE during AM1.5G irradiation, is stable for 12 h and the hydrogenase exhibits a turnover number of 1.9 × 10. The positive onset potential of +0.8 V vs RHE allows its combination with a BiVO water oxidation photoanode to give a self-sustaining, bias-free photoelectrochemical tandem system for overall water splitting (solar-to-hydrogen efficiency of 1.1%). This work demonstrates the compatibility of immersed perovskite elements with biological catalysts to produce hybrid photoelectrodes with benchmark performance, which establishes their utility in semiartificial photosynthesis.
卤化铅钙钛矿太阳能电池对水分极为敏感,不过最近的封装策略已证明其在水溶液中作为光电极的潜在应用价值。然而,钙钛矿光电极依赖于贵金属共催化剂,并且在集成器件中,它们与生物材料的结合仍然难以实现。在此,我们将来自希登伯勒的[NiFeSe]氢化酶(一种用于产氢的高活性酶)与三阳离子混合卤化物钙钛矿相连接。在AM1.5G光照下,该钙钛矿 - 氢化酶光电极在相对于可逆氢电极(RHE)为0 V时产生-5 mA cm²的光电流,可稳定12小时,且氢化酶的周转数为1.9×10⁶。相对于RHE的 +0.8 V的正起始电位使其能够与BiVO₄水氧化光阳极相结合,形成一个用于整体水分解的自持、无偏压光电化学串联系统(太阳能到氢能效率为1.1%)。这项工作证明了浸入式钙钛矿元件与生物催化剂的兼容性,从而产生具有基准性能的混合光电极,确立了它们在半人工光合作用中的实用性。