Suppr超能文献

采用残差编解码器卷积神经网络的低剂量CT

Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.

作者信息

Chen Hu, Zhang Yi, Kalra Mannudeep K, Lin Feng, Chen Yang, Liao Peixi, Zhou Jiliu, Wang Ge

出版信息

IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.

Abstract

Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

摘要

鉴于X射线辐射对患者存在潜在风险,低剂量CT在医学成像领域引起了广泛关注。目前,主流的低剂量CT方法包括特定厂商的正弦图域滤波和迭代重建算法,但它们需要访问原始数据,而大多数用户对这些数据格式并不了解。由于在图像域中对统计特征进行建模存在困难,现有的直接处理重建图像的方法在保留结构细节的同时,不能很好地消除图像噪声。受深度学习思想的启发,我们在此将自动编码器、反卷积网络和捷径连接组合到用于低剂量CT成像的残差编码器-解码器卷积神经网络(RED-CNN)中。经过基于补丁的训练后,所提出的RED-CNN在模拟和临床案例中相对于现有方法都取得了具有竞争力的性能。特别是,我们的方法在噪声抑制、结构保留和病变检测方面得到了良好的评价。

相似文献

1
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
2
Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
Med Phys. 2021 Jun;48(6):2973-2990. doi: 10.1002/mp.14856. Epub 2021 Apr 23.
5
STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
Med Phys. 2023 Jul;50(7):4443-4458. doi: 10.1002/mp.16249. Epub 2023 Feb 9.
6
Learning low-dose CT degradation from unpaired data with flow-based model.
Med Phys. 2022 Dec;49(12):7516-7530. doi: 10.1002/mp.15886. Epub 2022 Aug 8.
7
A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
Comput Methods Programs Biomed. 2022 Nov;226:107168. doi: 10.1016/j.cmpb.2022.107168. Epub 2022 Oct 1.
8
A Method of CT Image Denoising Based on Residual Encoder-Decoder Network.
J Healthc Eng. 2021 Sep 23;2021:2384493. doi: 10.1155/2021/2384493. eCollection 2021.

引用本文的文献

9
Ves-GAN: Unsupervised Vessel-Targeted Low-Dose Coronary Computed Tomography Angiography Denoising Framework.
BME Front. 2025 Jul 4;6:0149. doi: 10.34133/bmef.0149. eCollection 2025.
10
Efficient sparse-view medical image classification for low radiation and rapid COVID-19 diagnosis.
Biomed Eng Lett. 2025 May 22;15(4):785-795. doi: 10.1007/s13534-025-00478-4. eCollection 2025 Jul.

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
2
Spectral CT Reconstruction with Image Sparsity and Spectral Mean.
IEEE Trans Comput Imaging. 2016 Dec;2(4):510-523. doi: 10.1109/TCI.2016.2609414. Epub 2016 Sep 14.
4
Low-dose CT via convolutional neural network.
Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.
5
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Statistical iterative reconstruction using adaptive fractional order regularization.
Biomed Opt Express. 2016 Feb 24;7(3):1015-29. doi: 10.1364/BOE.7.001015. eCollection 2016 Mar 1.
8
Non-Local Auto-Encoder With Collaborative Stabilization for Image Restoration.
IEEE Trans Image Process. 2016 May;25(5):2117-29. doi: 10.1109/TIP.2016.2541318. Epub 2016 Mar 11.
9
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.
IEEE Trans Med Imaging. 2016 May;35(5):1322-1331. doi: 10.1109/TMI.2016.2532122. Epub 2016 Feb 18.
10
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验