Chen Hu, Zhang Yi, Kalra Mannudeep K, Lin Feng, Chen Yang, Liao Peixi, Zhou Jiliu, Wang Ge
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.
鉴于X射线辐射对患者存在潜在风险,低剂量CT在医学成像领域引起了广泛关注。目前,主流的低剂量CT方法包括特定厂商的正弦图域滤波和迭代重建算法,但它们需要访问原始数据,而大多数用户对这些数据格式并不了解。由于在图像域中对统计特征进行建模存在困难,现有的直接处理重建图像的方法在保留结构细节的同时,不能很好地消除图像噪声。受深度学习思想的启发,我们在此将自动编码器、反卷积网络和捷径连接组合到用于低剂量CT成像的残差编码器-解码器卷积神经网络(RED-CNN)中。经过基于补丁的训练后,所提出的RED-CNN在模拟和临床案例中相对于现有方法都取得了具有竞争力的性能。特别是,我们的方法在噪声抑制、结构保留和病变检测方面得到了良好的评价。