Suppr超能文献

采用残差编解码器卷积神经网络的低剂量CT

Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.

作者信息

Chen Hu, Zhang Yi, Kalra Mannudeep K, Lin Feng, Chen Yang, Liao Peixi, Zhou Jiliu, Wang Ge

出版信息

IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.

Abstract

Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

摘要

鉴于X射线辐射对患者存在潜在风险,低剂量CT在医学成像领域引起了广泛关注。目前,主流的低剂量CT方法包括特定厂商的正弦图域滤波和迭代重建算法,但它们需要访问原始数据,而大多数用户对这些数据格式并不了解。由于在图像域中对统计特征进行建模存在困难,现有的直接处理重建图像的方法在保留结构细节的同时,不能很好地消除图像噪声。受深度学习思想的启发,我们在此将自动编码器、反卷积网络和捷径连接组合到用于低剂量CT成像的残差编码器-解码器卷积神经网络(RED-CNN)中。经过基于补丁的训练后,所提出的RED-CNN在模拟和临床案例中相对于现有方法都取得了具有竞争力的性能。特别是,我们的方法在噪声抑制、结构保留和病变检测方面得到了良好的评价。

相似文献

1
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.采用残差编解码器卷积神经网络的低剂量CT
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.

引用本文的文献

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
2
Spectral CT Reconstruction with Image Sparsity and Spectral Mean.基于图像稀疏性和光谱均值的光谱CT重建
IEEE Trans Comput Imaging. 2016 Dec;2(4):510-523. doi: 10.1109/TCI.2016.2609414. Epub 2016 Sep 14.
4
Low-dose CT via convolutional neural network.基于卷积神经网络的低剂量CT
Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.
5
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Statistical iterative reconstruction using adaptive fractional order regularization.使用自适应分数阶正则化的统计迭代重建
Biomed Opt Express. 2016 Feb 24;7(3):1015-29. doi: 10.1364/BOE.7.001015. eCollection 2016 Mar 1.
8
Non-Local Auto-Encoder With Collaborative Stabilization for Image Restoration.基于协同稳定的非局部自动编码器图像恢复。
IEEE Trans Image Process. 2016 May;25(5):2117-29. doi: 10.1109/TIP.2016.2541318. Epub 2016 Mar 11.
10
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验