Suppr超能文献

基于深度学习的冠状动脉计算机断层扫描血管造影术对冠状动脉疾病的血管提取和狭窄检测的诊断性能:一项多读者多病例研究。

Diagnostic performance of deep learning-based vessel extraction and stenosis detection on coronary computed tomography angiography for coronary artery disease: a multi-reader multi-case study.

作者信息

Yang Wenjie, Chen Chihua, Yang Yanzhao, Chen Lei, Yang Changwei, Gong Lianggeng, Wang Jianing, Shi Feng, Wu Dijia, Yan Fuhua

机构信息

Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Radiology, Peking University People's Hospital, Beijing, China.

出版信息

Radiol Med. 2023 Mar;128(3):307-315. doi: 10.1007/s11547-023-01606-9. Epub 2023 Feb 17.

Abstract

BACKGROUND

Post-processing and interpretation of coronary CT angiography (CCTA) imaging are time-consuming and dependent on the reader's experience. An automated deep learning (DL)-based imaging reconstruction and diagnosis system was developed to improve diagnostic accuracy and efficiency.

METHODS

Our study including 374 cases from five sites, inviting 12 radiologists, assessed the DL-based system in diagnosing obstructive coronary disease with regard to diagnostic performance, imaging post-processing and reporting time of radiologists, with invasive coronary angiography as a standard reference. The diagnostic performance of DL system and DL-assisted human readers was compared with the traditional method of human readers without DL system.

RESULTS

Comparing the diagnostic performance of human readers without DL system versus with DL system, the AUC was improved from 0.81 to 0.82 (p < 0.05) at patient level and from 0.79 to 0.81 (p < 0.05) at vessel level. An increase in AUC was observed in inexperienced radiologists (p < 0.05), but was absent in experienced radiologists. Regarding diagnostic efficiency, comparing the DL system versus human reader, the average post-processing and reporting time was decreased from 798.60 s to 189.12 s (p < 0.05). The sensitivity and specificity of using DL system alone were 93.55% and 59.57% at patient level and 83.23% and 79.97% at vessel level, respectively.

CONCLUSIONS

With the DL system serving as a concurrent reader, the overall post-processing and reading time was substantially reduced. The diagnostic accuracy of human readers, especially for inexperienced readers, was improved. DL-assisted human reader had the potential of being the reading mode of choice in clinical routine.

摘要

背景

冠状动脉CT血管造影(CCTA)成像的后处理和解读耗时且依赖于阅片者的经验。为提高诊断准确性和效率,开发了一种基于深度学习(DL)的自动成像重建和诊断系统。

方法

我们的研究纳入了来自五个地点的374例病例,邀请了12名放射科医生,以有创冠状动脉造影作为标准参考,评估了基于DL的系统在诊断阻塞性冠状动脉疾病方面的诊断性能、成像后处理以及放射科医生的报告时间。将DL系统和DL辅助的人工阅片者的诊断性能与没有DL系统的传统人工阅片方法进行了比较。

结果

比较没有DL系统的人工阅片者与有DL系统的人工阅片者的诊断性能,在患者层面,曲线下面积(AUC)从0.81提高到0.82(p<0.05),在血管层面从0.79提高到0.81(p<0.05)。在经验不足的放射科医生中观察到AUC有所增加(p<0.05),但在经验丰富的放射科医生中未观察到。关于诊断效率,比较DL系统与人工阅片者,平均后处理和报告时间从798.60秒减少到189.12秒(p<0.05)。单独使用DL系统时,在患者层面的敏感性和特异性分别为93.55%和59.57%,在血管层面分别为83.23%和79.97%。

结论

以DL系统作为并行阅片者,整体后处理和阅片时间大幅减少。人工阅片者的诊断准确性得到提高,尤其是对于经验不足的阅片者。DL辅助的人工阅片者有可能成为临床常规中的首选阅片模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验