Suppr超能文献

羊腓骨第三肌 3 个月康复后容积性肌肉损失的修复。

Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 3-Month Recovery.

机构信息

Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Tissue Eng Part A. 2020 Aug;26(15-16):837-851. doi: 10.1089/ten.TEA.2019.0288. Epub 2020 Feb 28.

Abstract

Much effort has been made to fabricate engineered tissues on a scale that is clinically relevant to humans; however, scale-up remains one of the most significant technological challenges of tissue engineering to date. To address this limitation, our laboratory has developed tissue-engineered skeletal muscle units (SMUs) and engineered neural conduits (ENCs), and modularly scaled them to clinically relevant sizes for the treatment of volumetric muscle loss (VML). The goal of this study was to evaluate the SMUs and ENCs , and to test the efficacy of our SMUs and ENCs in restoring muscle function in a clinically relevant large animal (sheep) model. The animals received a 30% VML injury to the peroneus tertius muscle and were allowed to recover for 3 months. The animals were divided into three experimental groups: VML injury without a repair (VML only), repair with an SMU (VML+SMU), or repair with an SMU and ENC (VML+SMU+ENC). We evaluated the SMUs before implantation and found that our single scaled-up SMUs were characterized by the presence of contracting myotubes, linearly aligned extracellular matrix proteins, and Pax7 satellite cells. Three months after implantation, we found that the repair groups (VML+SMU and VML+SMU+ENC) had restored muscle mass and tetanic force production to a level that was statistically indistinguishable from the uninjured contralateral muscle after 3 months . Furthermore, we demonstrated the ability of our ENCs to effectively bridge the gap between native nerve and the repair site by eliciting a muscle contraction through direct electrical stimulation of the re-routed nerve. Impact statement The fabrication of tissues of clinically relevant sizes is one of the largest obstacles preventing engineered tissues from achieving widespread use in the clinic. This study aimed to combat this limitation by developing a fabrication method to scale-up tissue-engineered skeletal muscle for the treatment of volumetric muscle loss in a large animal (sheep) model and evaluating the efficacy of the tissue-engineered constructs after a 3-month recovery.

摘要

已经付出了大量努力来制造具有临床相关性的工程化组织;然而,迄今为止,扩大规模仍然是组织工程面临的最重大技术挑战之一。为了解决这一限制,我们的实验室已经开发出组织工程化骨骼肌单元 (SMU) 和工程化神经导管 (ENC),并对其进行了模块化扩展,使其达到治疗体积性肌肉损失 (VML) 的临床相关尺寸。本研究的目的是评估 SMU 和 ENC,并测试我们的 SMU 和 ENC 在恢复临床相关大型动物(绵羊)模型中肌肉功能的功效。动物接受了腓骨肌第三肌 30%的 VML 损伤,并允许其恢复 3 个月。动物分为三个实验组:无修复 VML 损伤(仅 VML)、用 SMU 修复(VML+SMU)或用 SMU 和 ENC 修复(VML+SMU+ENC)。我们在植入前评估了 SMU,并发现我们单个扩展的 SMU 具有收缩肌管、线性排列的细胞外基质蛋白和 Pax7 卫星细胞的特征。植入 3 个月后,我们发现修复组(VML+SMU 和 VML+SMU+ENC)已经恢复了肌肉质量和强直力产生,与未受伤的对侧肌肉在 3 个月后没有统计学差异。此外,我们通过直接对重新布线的神经进行电刺激来诱发肌肉收缩,证明了我们的 ENC 有效地将神经与修复部位连接起来的能力。影响声明具有临床相关性的组织的制造是阻止工程化组织在临床上广泛应用的最大障碍之一。本研究旨在通过开发一种扩大组织工程化骨骼肌的制造方法来治疗大型动物(绵羊)模型中的体积性肌肉损失,并在 3 个月的恢复后评估组织工程化构建体的功效来克服这一限制。

相似文献

1
Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 3-Month Recovery.
Tissue Eng Part A. 2020 Aug;26(15-16):837-851. doi: 10.1089/ten.TEA.2019.0288. Epub 2020 Feb 28.
2
Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 6-Month Recovery.
Tissue Eng Part A. 2022 Jul;28(13-14):606-620. doi: 10.1089/ten.TEA.2021.0187.
3
Repairing Volumetric Muscle Loss with Commercially Available Hydrogels in an Ovine Model.
Tissue Eng Part A. 2024 May;30(9-10):440-453. doi: 10.1089/ten.TEA.2023.0240. Epub 2024 Jan 31.
4
The Effects of Engineered Skeletal Muscle on Volumetric Muscle Loss in The Tibialis Anterior Of Rat After Three Months .
Regen Eng Transl Med. 2020 Dec;6(4):365-372. doi: 10.1007/s40883-020-00175-x. Epub 2020 Sep 23.
5
A tissue engineering approach for repairing craniofacial volumetric muscle loss in a sheep following a 2, 4, and 6-month recovery.
PLoS One. 2020 Sep 21;15(9):e0239152. doi: 10.1371/journal.pone.0239152. eCollection 2020.
6
Impact of Cell Seeding Density and Cell Confluence on Human Tissue Engineered Skeletal Muscle.
Tissue Eng Part A. 2022 May;28(9-10):420-432. doi: 10.1089/ten.TEA.2021.0132. Epub 2022 Feb 23.
7
Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair.
Tissue Eng Part A. 2020 Feb;26(3-4):140-156. doi: 10.1089/ten.TEA.2019.0126. Epub 2020 Jan 23.
8
Engineered skeletal muscle units for repair of volumetric muscle loss in the tibialis anterior muscle of a rat.
Tissue Eng Part A. 2014 Nov;20(21-22):2920-30. doi: 10.1089/ten.TEA.2014.0060. Epub 2014 Jun 23.
9
The Maturation of Tissue-Engineered Skeletal Muscle Units following 28-Day Ectopic Implantation in a Rat.
Regen Eng Transl Med. 2019 Mar;5(1):86-94. doi: 10.1007/s40883-018-0078-7. Epub 2018 Aug 22.
10
Impact of Human Epidermal Growth Factor on Tissue-Engineered Skeletal Muscle Structure and Function.
Tissue Eng Part A. 2021 Sep;27(17-18):1151-1159. doi: 10.1089/ten.TEA.2020.0255. Epub 2021 Mar 1.

引用本文的文献

1
A mouse model of volumetric muscle loss and therapeutic scaffold implantation.
Nat Protoc. 2025 Mar;20(3):608-619. doi: 10.1038/s41596-024-01059-y. Epub 2024 Oct 18.
2
Engineering large-scale hiPSC-derived vessel-integrated muscle-like lattices for enhanced volumetric muscle regeneration.
Trends Biotechnol. 2024 Dec;42(12):1715-1744. doi: 10.1016/j.tibtech.2024.08.001. Epub 2024 Sep 20.
3
A Novel Minimally Invasive Surgically Induced Skeletal Muscle Injury Model in Sheep.
Int J Mol Sci. 2024 May 21;25(11):5612. doi: 10.3390/ijms25115612.
4
Impact of Human Recombinant Irisin on Tissue-Engineered Skeletal Muscle Structure and Function.
Tissue Eng Part A. 2024 Jan;30(1-2):94-101. doi: 10.1089/ten.TEA.2023.0187. Epub 2023 Nov 6.
5
Actuated tissue engineered muscle grafts restore functional mobility after volumetric muscle loss.
Biomaterials. 2023 Nov;302:122317. doi: 10.1016/j.biomaterials.2023.122317. Epub 2023 Sep 8.
6
Translating musculoskeletal bioengineering into tissue regeneration therapies.
Sci Transl Med. 2022 Oct 12;14(666):eabn9074. doi: 10.1126/scitranslmed.abn9074.
7
Scalable macroporous hydrogels enhance stem cell treatment of volumetric muscle loss.
Biomaterials. 2022 Nov;290:121818. doi: 10.1016/j.biomaterials.2022.121818. Epub 2022 Sep 23.
8
Human muscle in gene edited pigs for treatment of volumetric muscle loss.
Front Genet. 2022 Jul 25;13:948496. doi: 10.3389/fgene.2022.948496. eCollection 2022.
9
Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 6-Month Recovery.
Tissue Eng Part A. 2022 Jul;28(13-14):606-620. doi: 10.1089/ten.TEA.2021.0187.
10
Impact of Cell Seeding Density and Cell Confluence on Human Tissue Engineered Skeletal Muscle.
Tissue Eng Part A. 2022 May;28(9-10):420-432. doi: 10.1089/ten.TEA.2021.0132. Epub 2022 Feb 23.

本文引用的文献

1
A 30% Volumetric Muscle Loss Does Not Result in Sustained Functional Deficits after a 90-Day Recovery in Rats.
Regen Eng Transl Med. 2020 Mar;6(1):62-68. doi: 10.1007/s40883-019-00117-2. Epub 2019 Jul 16.
2
Pharmacological Mitigation of Fibrosis in a Porcine Model of Volumetric Muscle Loss Injury.
Tissue Eng Part A. 2020 Jun;26(11-12):636-646. doi: 10.1089/ten.TEA.2019.0272. Epub 2020 Jan 22.
3
A Comparison of Ovine Facial and Limb Muscle as a Primary Cell Source for Engineered Skeletal Muscle.
Tissue Eng Part A. 2020 Feb;26(3-4):167-177. doi: 10.1089/ten.TEA.2019.0087. Epub 2019 Oct 7.
4
The Maturation of Tissue-Engineered Skeletal Muscle Units following 28-Day Ectopic Implantation in a Rat.
Regen Eng Transl Med. 2019 Mar;5(1):86-94. doi: 10.1007/s40883-018-0078-7. Epub 2018 Aug 22.
5
Effects of Dexamethasone Dose and Timing on Tissue-Engineered Skeletal Muscle Units.
Cells Tissues Organs. 2018;205(4):197-207. doi: 10.1159/000490884. Epub 2018 Aug 17.
6
Time course of traumatic neuroma development.
PLoS One. 2018 Jul 16;13(7):e0200548. doi: 10.1371/journal.pone.0200548. eCollection 2018.
7
A Transgenic tdTomato Rat for Cell Migration and Tissue Engineering Applications.
Tissue Eng Part C Methods. 2018 May;24(5):263-271. doi: 10.1089/ten.TEC.2017.0406. Epub 2018 Apr 10.
8
Unwavering Pathobiology of Volumetric Muscle Loss Injury.
Sci Rep. 2017 Oct 13;7(1):13179. doi: 10.1038/s41598-017-13306-2.
9
Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation.
Tissue Eng Part C Methods. 2018 Jan;24(1):32-41. doi: 10.1089/ten.TEC.2017.0316. Epub 2017 Nov 6.
10
Quantitative, Label-Free Evaluation of Tissue-Engineered Skeletal Muscle Through Multiphoton Microscopy.
Tissue Eng Part C Methods. 2017 Oct;23(10):616-626. doi: 10.1089/ten.TEC.2017.0284. Epub 2017 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验