Lee Myung Chul, Jodat Yasamin A, Endo Yori, Rodríguez-delaRosa Alejandra, Zhang Ting, Karvar Mehran, Al Tanoury Ziad, Quint Jacob, Kamperman Tom, Kiaee Kiavash, Ochoa Sofia Lara, Shi Kun, Huang Yike, Rosales Montserrat Pineda, Arnaout Adnan, Lee Hyeseon, Kim Jiseong, Ceron Eder Luna, Reyes Isaac Garcia, Panayi Adriana C, Martinez Angel Flores Huidobro, Wang Xichi, Kim Ki-Tae, Moon Jae-I, Park Seung Gwa, Lee Kangju, Calabrese Michelle A, Hassan Shabir, Lee Junmin, Tamayol Ali, Lee Luke, Pourquié Olivier, Kim Woo-Jin, Sinha Indranil, Shin Su Ryon
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Medicinal Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
Trends Biotechnol. 2024 Dec;42(12):1715-1744. doi: 10.1016/j.tibtech.2024.08.001. Epub 2024 Sep 20.
Engineering biomimetic tissue implants with human induced pluripotent stem cells (hiPSCs) holds promise for repairing volumetric tissue loss. However, these implants face challenges in regenerative capability, survival, and geometric scalability at large-scale injury sites. Here, we present scalable vessel-integrated muscle-like lattices (VMLs), containing dense and aligned hiPSC-derived myofibers alongside passively perfusable vessel-like microchannels inside an endomysium-like supporting matrix using an embedded multimaterial bioprinting technology. The contractile and millimeter-long myofibers are created in mechanically tailored and nanofibrous extracellular matrix-based hydrogels. Incorporating vessel-like lattice enhances myofiber maturation in vitro and guides host vessel invasion in vivo, improving implant integration. Consequently, we demonstrate successful de novo muscle formation and muscle function restoration through a combinatorial effect between improved graft-host integration and its increased release of paracrine factors within volumetric muscle loss injury models. The proposed modular bioprinting technology enables scaling up to centimeter-sized prevascularized hiPSC-derived muscle tissues with custom geometries for next-generation muscle regenerative therapies.
利用人类诱导多能干细胞(hiPSC)构建仿生组织植入物有望修复大面积组织缺损。然而,这些植入物在大规模损伤部位的再生能力、存活率和几何尺寸可扩展性方面面临挑战。在此,我们展示了可扩展的血管整合肌肉样晶格(VML),它包含密集且排列整齐的hiPSC衍生肌纤维,以及使用嵌入式多材料生物打印技术在肌内膜样支撑基质内的被动灌注血管样微通道。收缩性且长达毫米级的肌纤维是在基于机械定制和纳米纤维细胞外基质的水凝胶中生成的。整合血管样晶格可增强体外肌纤维成熟,并引导体内宿主血管侵入,改善植入物整合。因此,我们通过改善移植物与宿主的整合及其在大面积肌肉缺损损伤模型中旁分泌因子释放增加之间的组合效应,证明了成功的新生肌肉形成和肌肉功能恢复。所提出的模块化生物打印技术能够扩展到厘米级的预血管化hiPSC衍生肌肉组织,并具有定制几何形状,用于下一代肌肉再生疗法。