Dixon Padraig, Hollingworth William, Harrison Sean, Davies Neil M, Davey Smith George
Population Health Sciences, University of Bristol, United Kingdom; MRC Integrative Epidemiology Unit, University of Bristol, United Kingdom.
Population Health Sciences, University of Bristol, United Kingdom.
J Health Econ. 2020 Mar;70:102300. doi: 10.1016/j.jhealeco.2020.102300. Epub 2020 Jan 25.
Estimates of the marginal effect of measures of adiposity such as body mass index (BMI) on healthcare costs are important for the formulation and evaluation of policies targeting adverse weight profiles. Most estimates of this association are affected by endogeneity bias. We use a novel identification strategy exploiting Mendelian Randomization - random germline genetic variation modelled using instrumental variables - to identify the causal effect of BMI on inpatient hospital costs. Using data on over 300,000 individuals, the effect size per person per marginal unit of BMI per year varied according to specification, including £21.22 (95% confidence interval (CI): £14.35-£28.07) for conventional inverse variance weighted models to £18.85 (95% CI: £9.05-£28.65) for penalized weighted median models. Effect sizes from Mendelian Randomization models were larger in most cases than non-instrumental variable multivariable adjusted estimates (£13.47, 95% CI: £12.51-£14.43). There was little evidence of non-linearity. Within-family estimates, intended to address dynastic biases, were imprecise.
评估肥胖指标(如体重指数(BMI))对医疗费用的边际效应,对于制定和评估针对不良体重状况的政策至关重要。对这种关联的大多数估计都受到内生性偏差的影响。我们采用一种新颖的识别策略,利用孟德尔随机化——使用工具变量对随机种系基因变异进行建模——来确定BMI对住院费用的因果效应。利用超过30万人的数据,根据不同设定,每人每年BMI每增加一个边际单位的效应大小有所不同,传统逆方差加权模型为21.22英镑(95%置信区间(CI):14.35 - 28.07英镑),惩罚加权中位数模型为18.85英镑(95% CI:9.05 - 28.65英镑)。在大多数情况下,孟德尔随机化模型的效应大小大于非工具变量多变量调整估计值(13.47英镑,95% CI:12.51 - 14.43英镑)。几乎没有非线性的证据。旨在解决家族偏差的家庭内部估计并不精确。