Carnegie Cloudy, Urbieta Mattin, Chikkaraddy Rohit, de Nijs Bart, Griffiths Jack, Deacon William M, Kamp Marlous, Zabala Nerea, Aizpurua Javier, Baumberg Jeremy J
Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK.
Department of Electricity and Electronics, FCT/ZTF, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain.
Nat Commun. 2020 Feb 3;11(1):682. doi: 10.1038/s41467-019-14150-w.
The dynamic restructuring of metal nanoparticle surfaces is known to greatly influence their catalytic, electronic transport, and chemical binding functionalities. Here we show for the first time that non-equilibrium atomic-scale lattice defects can be detected in nanoparticles by purely optical means. These fluctuating states determine interface electronic transport for molecular electronics but because such rearrangements are low energy, measuring their rapid dynamics on single nanostructures by X-rays, electron beams, or tunnelling microscopies, is invasive and damaging. We utilise nano-optics at the sub-5nm scale to reveal rapid (on the millisecond timescale) evolution of defect morphologies on facets of gold nanoparticles on a mirror. Besides dynamic structural information, this highlights fundamental questions about defining bulk plasma frequencies for metals probed at the nanoscale.
金属纳米颗粒表面的动态重构对其催化、电子传输和化学结合功能有很大影响,这是已知的。在此,我们首次展示了可以通过纯光学手段检测纳米颗粒中的非平衡原子尺度晶格缺陷。这些波动状态决定了分子电子学中的界面电子传输,但由于这种重排能量较低,通过X射线、电子束或隧道显微镜在单个纳米结构上测量其快速动力学具有侵入性且会造成破坏。我们利用亚5纳米尺度的纳米光学技术来揭示镜子上金纳米颗粒表面缺陷形态的快速(毫秒时间尺度)演变。除了动态结构信息外,这还凸显了关于定义纳米尺度探测的金属体等离子体频率的基本问题。