Suppr超能文献

异染色质的建立与演化。

Establishment and evolution of heterochromatin.

机构信息

MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.

Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria.

出版信息

Ann N Y Acad Sci. 2020 Sep;1476(1):59-77. doi: 10.1111/nyas.14303. Epub 2020 Feb 4.

Abstract

The eukaryotic genome is packaged into transcriptionally active euchromatin and silent heterochromatin, with most studies focused on the former encompassing the majority of protein-coding genes. The recent development of various sequencing techniques has refined this classic dichromatic partition and has better illuminated the composition, establishment, and evolution of this genomic and epigenomic "dark matter" in the context of topologically associated domains and phase-separated droplets. Heterochromatin includes genomic regions that can be densely stained by chemical dyes, which have been shown to be enriched for repetitive elements and epigenetic marks, including H3K9me2/3 and H3K27me3. Heterochromatin is usually replicated late, concentrated at the nuclear periphery or around nucleoli, and usually lacks highly expressed genes; and now it is considered to be as neither genetically inert nor developmentally static. Heterochromatin guards genome integrity against transposon activities and exerts important regulatory functions by targeting beyond its contained genes. Both its nucleotide sequences and regulatory proteins exhibit rapid coevolution between species. In addition, there are dynamic transitions between euchromatin and heterochromatin during developmental and evolutionary processes. We summarize here the ever-changing characteristics of heterochromatin and propose models and principles for the evolutionary transitions of heterochromatin that have been mainly learned from studies of Drosophila and yeast. Finally, we highlight the role of sex chromosomes in studying heterochromatin evolution.

摘要

真核基因组被包装成转录活跃的常染色质和沉默的异染色质,大多数研究集中在前者,包含大多数蛋白质编码基因。最近各种测序技术的发展改进了这一经典的二分法,并更好地阐明了这种基因组和表观基因组“暗物质”在拓扑相关结构域和相分离液滴中的组成、建立和进化。异染色质包括可以被化学染料高度染色的基因组区域,这些区域被证明富含重复元件和表观遗传标记,包括 H3K9me2/3 和 H3K27me3。异染色质通常复制较晚,集中在核周或核仁周围,通常缺乏高表达基因;现在认为它既不是遗传惰性的,也不是发育静态的。异染色质保护基因组的完整性免受转座子的活动,并通过靶向其包含的基因以外的基因发挥重要的调节功能。其核苷酸序列和调节蛋白在物种间表现出快速的协同进化。此外,在发育和进化过程中,常染色质和异染色质之间存在动态转换。在这里,我们总结了异染色质不断变化的特征,并提出了主要从果蝇和酵母研究中得出的异染色质进化的模型和原则。最后,我们强调了性染色体在研究异染色质进化中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce34/7586837/5b26bbdbbb87/NYAS-1476-59-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验