Suppr超能文献

人工智能在心脏成像中的发展与应用。

Development and application of artificial intelligence in cardiac imaging.

机构信息

Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.

Shukun (Beijing) Technology Co, Ltd., Jinhui Bd, Qiyang Rd, Beijing 100102, China.

出版信息

Br J Radiol. 2020 Sep 1;93(1113):20190812. doi: 10.1259/bjr.20190812. Epub 2020 Feb 6.

Abstract

In this review, we describe the technical aspects of artificial intelligence (AI) in cardiac imaging, starting with radiomics, basic algorithms of deep learning and application tasks of algorithms, until recently the availability of the public database. Subsequently, we conducted a systematic literature search for recently published clinically relevant studies on AI in cardiac imaging. As a result, 24 and 14 studies using CT and MRI, respectively, were included and summarized. From these studies, it can be concluded that AI is widely applied in cardiac applications in the clinic, including coronary calcium scoring, coronary CT angiography, fractional flow reserve CT, plaque analysis, left ventricular myocardium analysis, diagnosis of myocardial infarction, prognosis of coronary artery disease, assessment of cardiac function, and diagnosis and prognosis of cardiomyopathy. These advancements show that AI has a promising prospect in cardiac imaging.

摘要

在这篇综述中,我们描述了人工智能(AI)在心脏成像中的技术方面,从放射组学到深度学习的基本算法和算法的应用任务,直到最近的公共数据库的可用性。随后,我们对心脏成像中 AI 的最近发表的临床相关研究进行了系统的文献检索。结果,共纳入并总结了分别使用 CT 和 MRI 的 24 项和 14 项研究。从这些研究中可以得出结论,人工智能在心脏应用中的临床应用广泛,包括冠状动脉钙化评分、冠状动脉 CT 血管造影、血流储备分数 CT、斑块分析、左心室心肌分析、心肌梗死诊断、冠状动脉疾病预后、心功能评估以及心肌病的诊断和预后。这些进展表明,人工智能在心脏成像中具有广阔的前景。

相似文献

1
Development and application of artificial intelligence in cardiac imaging.
Br J Radiol. 2020 Sep 1;93(1113):20190812. doi: 10.1259/bjr.20190812. Epub 2020 Feb 6.
3
Artificial intelligence in cardiac radiology.
Radiol Med. 2020 Nov;125(11):1186-1199. doi: 10.1007/s11547-020-01277-w. Epub 2020 Sep 18.
4
CT myocardial perfusion and coronary CT angiography: Influence of coronary calcium on a stress-rest protocol.
J Cardiovasc Comput Tomogr. 2016 May-Jun;10(3):215-20. doi: 10.1016/j.jcct.2016.01.013. Epub 2016 Jan 30.
7
Artificial intelligence in cardiac computed tomography.
Prog Cardiovasc Dis. 2023 Nov-Dec;81:54-77. doi: 10.1016/j.pcad.2023.09.001. Epub 2023 Sep 7.
8
Coronary CT angiography derived fractional flow reserve: Methodology and evaluation of a point of care algorithm.
J Cardiovasc Comput Tomogr. 2016 Mar-Apr;10(2):105-13. doi: 10.1016/j.jcct.2015.12.006. Epub 2015 Dec 18.
9
10
The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFR) values.
Int J Cardiovasc Imaging. 2020 Jun;36(6):1177-1185. doi: 10.1007/s10554-020-01807-7. Epub 2020 Mar 4.

引用本文的文献

1
Artificial Intelligence in Adult Congenital Heart Disease: Diagnostic and Therapeutic Applications and Future Directions.
Rev Cardiovasc Med. 2025 Aug 28;26(8):41523. doi: 10.31083/RCM41523. eCollection 2025 Aug.
2
A narrative review on ethical considerations and challenges in AI-driven cardiology.
Ann Med Surg (Lond). 2025 May 12;87(7):4152-4164. doi: 10.1097/MS9.0000000000003349. eCollection 2025 Jul.
3
Viability Test in Prediction of Response to Cardiac Resynchronization Therapy.
J Clin Med. 2025 Jul 29;14(15):5341. doi: 10.3390/jcm14155341.
4
An Artificial Intelligence Pipeline for Hepatocellular Carcinoma: From Data to Treatment Recommendations.
Int J Gen Med. 2025 Jul 2;18:3581-3595. doi: 10.2147/IJGM.S529322. eCollection 2025.
6
Freedom of Atrial Fibrillation Predictions After Pulmonary Vein Isolation: A Review of Current Evidence.
Rev Cardiovasc Med. 2025 May 21;26(5):36588. doi: 10.31083/RCM36588. eCollection 2025 May.
8
Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact.
Radiol Med. 2024 Dec;129(12):1751-1765. doi: 10.1007/s11547-024-01904-w. Epub 2024 Oct 30.
9
Diagnostic value of artificial intelligence-assisted CTA for the assessment of atherosclerosis plaque: a systematic review and meta-analysis.
Front Cardiovasc Med. 2024 Sep 3;11:1398963. doi: 10.3389/fcvm.2024.1398963. eCollection 2024.

本文引用的文献

1
Challenges Related to Artificial Intelligence Research in Medical Imaging and the Importance of Image Analysis Competitions.
Radiol Artif Intell. 2019 Jan 30;1(1):e180031. doi: 10.1148/ryai.2019180031. eCollection 2019 Jan.
3
Deep Learning Analysis of Coronary Arteries in Cardiac CT Angiography for Detection of Patients Requiring Invasive Coronary Angiography.
IEEE Trans Med Imaging. 2020 May;39(5):1545-1557. doi: 10.1109/TMI.2019.2953054. Epub 2019 Nov 12.
4
Coronary artery calcium score quantification using a deep-learning algorithm.
Clin Radiol. 2020 Mar;75(3):237.e11-237.e16. doi: 10.1016/j.crad.2019.10.012. Epub 2019 Nov 11.
6
Motion-corrected coronary calcium scores by a convolutional neural network: a robotic simulating study.
Eur Radiol. 2020 Feb;30(2):1285-1294. doi: 10.1007/s00330-019-06447-7. Epub 2019 Oct 18.
9
State-of-the-Art Deep Learning in Cardiovascular Image Analysis.
JACC Cardiovasc Imaging. 2019 Aug;12(8 Pt 1):1549-1565. doi: 10.1016/j.jcmg.2019.06.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验