Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.
Oxford Academic Cardiovascular CT Core Laboratory, West Wing, John Radcliffe Hospital, Headley Way, Oxford, UK.
Eur Heart J. 2019 Nov 14;40(43):3529-3543. doi: 10.1093/eurheartj/ehz592.
Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction.
We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62-0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI.
The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.
冠状动脉炎症会引起血管周围脂肪组织(PVAT)中水分和脂质含量平衡的动态变化,这种变化可以通过标准冠状动脉 CT 血管造影(CCTA)中的血管周围脂肪衰减指数(FAI)来捕捉。然而,炎症并不是动脉粥样硬化形成过程中唯一涉及的过程,我们假设,不良纤维化和微血管 PVAT 重塑的其他放射组学特征可能会进一步改善心脏风险预测。
我们提出了一种新的人工智能驱动的方法,通过分析冠状动脉 PVAT 的放射组学特征来预测心脏风险,该方法在三个不同研究中获得的患者队列中进行了开发和验证。在研究 1 中,从 167 名接受心脏手术的患者中获取了脂肪组织活检,并将代表炎症、纤维化和血管生成的基因表达与从组织 CT 图像中提取的放射组学特征联系起来。脂肪组织的小波变换平均衰减(由 FAI 捕获)是描述组织炎症(TNFA 表达)最敏感的放射组学特征,而放射组学纹理的特征与脂肪组织纤维化(COL1A1 表达)和血管生成(CD31 表达)有关。在研究 2 中,我们分析了 101 名在 5 年内经历主要不良心脏事件(MACE)的 101 名患者和 101 名匹配对照者的 1391 个冠状动脉 PVAT 放射组学特征,训练和验证了一种机器学习(随机森林)算法(脂肪放射组学特征,FRP)来区分病例和对照者(外部验证集的 C 统计量为 0.77 [95%CI:0.62-0.93])。然后,在 SCOT-HEART 试验的 1575 名连续合格参与者中测试了冠状动脉 FRP 特征,该特征显著提高了传统风险分层的 MACE 预测能力,传统风险分层包括危险因素、冠状动脉钙评分、冠状动脉狭窄和 CCTA 上的高危斑块特征(Δ[C 统计量] = 0.126,P<0.001)。在研究 3 中,与 44 名匹配对照者相比,44 名急性心肌梗死患者的 FRP 明显升高,但与 FAI 不同,在指数事件后 6 个月时保持不变,证实 FRP 检测到了 FAI 无法捕捉到的持续的 PVAT 变化。
基于 CCTA 的冠状动脉 PVAT 放射组学特征分析可检测到与冠状动脉疾病相关的血管周围结构重塑,而不仅仅是炎症。一种新的人工智能(AI)驱动的成像生物标志物(FRP)可以显著提高心脏风险预测的准确性,超过目前的最新技术。