Suppr超能文献

能量收集可穿戴物联网设备的优化。

Optimization for Energy-Harvesting Wearable IoT Devices.

机构信息

School of Electrical Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA; {gmbhat, anishnk, umit}@asu.edu.

出版信息

Sensors (Basel). 2020 Jan 30;20(3):764. doi: 10.3390/s20030764.

Abstract

Wearable internet of things (IoT) devices can enable a variety of biomedical applications,such as gesture recognition, health monitoring, and human activity tracking. Size and weightconstraints limit the battery capacity, which leads to frequent charging requirements and userdissatisfaction. Minimizing the energy consumption not only alleviates this problem, but alsopaves the way for self-powered devices that operate on harvested energy. This paper considers anenergy-optimal gesture recognition application that runs on energy-harvesting devices. We firstformulate an optimization problem for maximizing the number of recognized gestures when energybudget and accuracy constraints are given. Next, we derive an analytical energy model from thepower consumption measurements using a wearable IoT device prototype. Then, we prove thatmaximizing the number of recognized gestures is equivalent to minimizing the duration of gesturerecognition. Finally, we utilize this result to construct an optimization technique that maximizes thenumber of gestures recognized under the energy budget constraints while satisfying the recognitionaccuracy requirements. Our extensive evaluations demonstrate that the proposed analytical modelis valid for wearable IoT applications, and the optimization approach increases the number ofrecognized gestures by up to 2.4× compared to a manual optimization.

摘要

可穿戴物联网 (IoT) 设备可以实现各种生物医学应用,例如手势识别、健康监测和人体活动跟踪。尺寸和重量限制了电池容量,这导致频繁的充电需求和用户不满。最小化能源消耗不仅可以解决这个问题,还为利用采集能量运行的自供电设备铺平了道路。本文考虑了在能量采集设备上运行的节能手势识别应用。我们首先在给定能量预算和准确性约束的情况下,针对最大识别手势数量的问题进行了优化。接下来,我们使用可穿戴式 IoT 设备原型的功耗测量值推导出了一个分析能量模型。然后,我们证明了最大化识别手势数量等同于最小化手势识别持续时间。最后,我们利用这个结果构建了一种优化技术,在满足识别准确性要求的同时,在能量预算限制下最大化可识别手势的数量。我们的广泛评估表明,所提出的分析模型对于可穿戴式 IoT 应用是有效的,并且与手动优化相比,所提出的优化方法可将识别的手势数量增加多达 2.4 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f2/7038460/3e87644f5c7c/sensors-20-00764-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验