Suppr超能文献

分子分析中的约束分类器:不变性与稳健性

Constraining classifiers in molecular analysis: invariance and robustness.

作者信息

Lausser Ludwig, Szekely Robin, Klimmek Attila, Schmid Florian, Kestler Hans A

机构信息

Institute of Medical Systems Biology, Ulm University, Ulm, Germany.

Leibniz Institute on Aging, Jena, Germany.

出版信息

J R Soc Interface. 2020 Feb;17(163):20190612. doi: 10.1098/rsif.2019.0612. Epub 2020 Feb 5.

Abstract

Analysing molecular profiles requires the selection of classification models that can cope with the high dimensionality and variability of these data. Also, improper reference point choice and scaling pose additional challenges. Often model selection is somewhat guided by simulations rather than by sophisticated considerations on the properties of a categorization model. Here, we derive and report four linked linear concept classes/models with distinct invariance properties for high-dimensional molecular classification. We can further show that these concept classes also form a half-order of complexity classes in terms of Vapnik-Chervonenkis dimensions, which also implies increased generalization abilities. We implemented support vector machines with these properties. Surprisingly, we were able to attain comparable or even superior generalization abilities to the standard linear one on the 27 investigated RNA-Seq and microarray datasets. Our results indicate that chosen invariant models can replace robustness analysis by interpretable and theoretically guaranteed properties in molecular categorization.

摘要

分析分子图谱需要选择能够应对这些数据的高维度和变异性的分类模型。此外,不恰当的参考点选择和缩放也带来了额外的挑战。通常,模型选择在一定程度上是由模拟指导的,而不是基于对分类模型属性的深入考虑。在这里,我们推导并报告了用于高维分子分类的四个具有不同不变性属性的关联线性概念类/模型。我们还可以进一步表明,就Vapnik-Chervonenkis维度而言,这些概念类也形成了一个半阶的复杂度类,这也意味着泛化能力的提高。我们用这些属性实现了支持向量机。令人惊讶的是,在27个研究的RNA序列和微阵列数据集上,我们能够获得与标准线性模型相当甚至更好的泛化能力。我们的结果表明,选择的不变模型可以在分子分类中通过可解释且理论上有保证的属性来取代稳健性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfb/7061712/9188e9d09739/rsif20190612-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验