Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland, USA.
Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, USA.
mBio. 2019 Apr 30;10(2):e02825-18. doi: 10.1128/mBio.02825-18.
In filamentous fungi, an important kinase responsible for adaptation to changes in available nutrients is cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]). This kinase has been well characterized at a molecular level, but its systemic action and direct/indirect targets are generally not well understood in filamentous fungi. In this work, we used a deletion strain (Δ) to identify proteins for which phosphorylation is dependent (either directly or indirectly) on PKA. A combination of phosphoproteomic and transcriptomic analyses revealed both direct and indirect targets of PKA and provided a global perspective on its function. One of these targets was the transcription factor CreA, the main repressor responsible for carbon catabolite repression (CCR). In the Δ strain, we identified a previously unreported phosphosite in CreA, S319, which (based on motif analysis) appears to be a direct target of Stk22 kinase (AN5728). Upon replacement of CreA S319 with an alanine (i.e., phosphonull mutant), the dynamics of CreA import to the nucleus are affected. Collectively, this work provides a global overview of PKA function while also providing novel insight regarding significance of a specific PKA-mediated phosphorylation event. The cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathway is well conserved across eukaryotes, and previous work has shown that it plays an important role in regulating development, growth, and virulence in a number of fungi. PKA is activated in response to extracellular nutrients and acts to regulate metabolism and growth. While a number of components in the PKA pathway have been defined in filamentous fungi, current understanding does not provide a global perspective on PKA function. Thus, this work is significant in that it comprehensively identifies proteins and functional pathways regulated by PKA in a model filamentous fungus. This information enhances our understanding of PKA action and may provide information on how to manipulate it for specific purposes.
在丝状真菌中,一种负责适应可用营养物质变化的重要激酶是环腺苷酸(cAMP)依赖性蛋白激酶(蛋白激酶 A [PKA])。这种激酶在分子水平上已经得到了很好的描述,但其在丝状真菌中的系统作用和直接/间接靶点通常还不太清楚。在这项工作中,我们使用缺失菌株(Δ)来鉴定那些磷酸化依赖(直接或间接)于 PKA 的蛋白质。磷酸蛋白质组学和转录组学分析的结合揭示了 PKA 的直接和间接靶点,并提供了其功能的全局视角。这些靶点之一是转录因子 CreA,它是负责碳分解代谢物阻遏(CCR)的主要阻遏物。在Δ菌株中,我们鉴定了 CreA 中一个以前未报道的磷酸化位点 S319,根据基序分析,它似乎是 Stk22 激酶(AN5728)的直接靶点。当 CreA S319 被丙氨酸取代(即磷酸化缺失突变体)时,CreA 向核内的输入动力学受到影响。总的来说,这项工作提供了 PKA 功能的全局概述,同时也提供了关于特定 PKA 介导的磷酸化事件意义的新见解。环腺苷酸(cAMP)依赖性蛋白激酶 A(PKA)信号通路在真核生物中高度保守,以前的工作表明它在调节许多真菌的发育、生长和毒力方面起着重要作用。PKA 是对外界营养物质的反应而被激活的,它的作用是调节代谢和生长。虽然丝状真菌中的 PKA 途径的许多成分已经被定义,但目前的理解并没有提供 PKA 功能的全局视角。因此,这项工作的意义在于它全面地鉴定了模型丝状真菌中受 PKA 调节的蛋白质和功能途径。这一信息增强了我们对 PKA 作用的理解,并可能为如何针对特定目的操纵它提供信息。