Suppr超能文献

基于特征共享自适应增强的深度学习在 CT 图像中对肺亚实性结节侵袭性的分类。

Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Medical Imaging Department, Jinhua Municipal Central Hospital, Jinhua, 321001, China.

出版信息

Med Phys. 2020 Apr;47(4):1738-1749. doi: 10.1002/mp.14068. Epub 2020 Feb 26.

Abstract

PURPOSE

In clinical practice, invasiveness is an important reference indicator for differentiating the malignant degree of subsolid pulmonary nodules. These nodules can be classified as atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC). The automatic determination of a nodule's invasiveness based on chest CT scans can guide treatment planning. However, it is challenging, owing to the insufficiency of training data and their interclass similarity and intraclass variation. To address these challenges, we propose a two-stage deep learning strategy for this task: prior-feature learning followed by adaptive-boost deep learning.

METHODS

The adaptive-boost deep learning is proposed to train a strong classifier for invasiveness classification of subsolid nodules in chest CT images, using multiple 3D convolutional neural network (CNN)-based weak classifiers. Because ensembles of multiple deep 3D CNN models have a huge number of parameters and require large computing resources along with more training and testing time, the prior-feature learning is proposed to reduce the computations by sharing the CNN layers between all weak classifiers. Using this strategy, all weak classifiers can be integrated into a single network.

RESULTS

Tenfold cross validation of binary classification was conducted on a total of 1357 nodules, including 765 noninvasive (AAH and AIS) and 592 invasive nodules (MIA and IAC). Ablation experimental results indicated that the proposed binary classifier achieved an accuracy of with an AUC of 81.3 . These results are superior compared to those achieved by three experienced chest imaging specialists who achieved an accuracy of , , and , respectively. About 200 additional nodules were also collected. These nodules covered 50 cases for each category (AAH, AIS, MIA, and IAC, respectively). Both binary and multiple classifications were performed on these data and the results demonstrated that the proposed method definitely achieves better performance than the performance achieved by nonensemble deep learning methods.

CONCLUSIONS

It can be concluded that the proposed adaptive-boost deep learning can significantly improve the performance of invasiveness classification of pulmonary subsolid nodules in CT images, while the prior-feature learning can significantly reduce the total size of deep models. The promising results on clinical data show that the trained models can be used as an effective lung cancer screening tool in hospitals. Moreover, the proposed strategy can be easily extended to other similar classification tasks in 3D medical images.

摘要

目的

在临床实践中,侵袭性是区分肺部亚实性结节恶性程度的重要参考指标。这些结节可分为非典型腺瘤样增生(AAH)、原位腺癌(AIS)、微浸润性腺癌(MIA)或浸润性腺癌(IAC)。基于胸部 CT 扫描自动确定结节的侵袭性可以指导治疗计划。然而,由于训练数据不足以及它们的类内相似性和类内变异性,这具有挑战性。为了解决这些挑战,我们提出了一种两阶段深度学习策略:先验特征学习后自适应增强深度学习。

方法

采用基于多个 3D 卷积神经网络(CNN)的弱分类器的自适应增强深度学习,提出了用于训练胸部 CT 图像中亚实性结节侵袭性分类的强分类器。由于多个深度 3D CNN 模型的集成具有大量参数,并且需要大量计算资源以及更多的训练和测试时间,因此提出了先验特征学习来通过在所有弱分类器之间共享 CNN 层来减少计算量。使用这种策略,所有弱分类器都可以集成到单个网络中。

结果

对总共 1357 个结节(包括 765 个非侵袭性(AAH 和 AIS)和 592 个侵袭性结节(MIA 和 IAC))进行了十折交叉验证的二进制分类。消融实验结果表明,所提出的二进制分类器的准确率为 ,AUC 为 81.3 。这些结果优于三位经验丰富的胸部成像专家所取得的结果,他们的准确率分别为 、 、和 。还收集了大约 200 个额外的结节。这些结节分别涵盖了每个类别(AAH、AIS、MIA 和 IAC)的 50 个病例。对这些数据进行了二进制和多分类,结果表明所提出的方法确实比非集成深度学习方法的性能更好。

结论

可以得出结论,所提出的自适应增强深度学习可以显著提高 CT 图像中肺部亚实性结节侵袭性分类的性能,而先验特征学习可以显著减小深度模型的总体规模。在临床数据上的有前景的结果表明,训练后的模型可作为医院中有效的肺癌筛查工具。此外,所提出的策略可以很容易地扩展到其他类似的 3D 医学图像分类任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验