Department of Automation, Tsinghua University, Beijing 100084, China; Department of Radiology, Brigham and Women's Hospital, Boston 02115, USA.
Department of Automation, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
Comput Med Imaging Graph. 2021 Mar;88:101814. doi: 10.1016/j.compmedimag.2020.101814. Epub 2020 Dec 11.
Classifying ground-glass lung nodules (GGNs) into atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) on diagnostic CT images is important to evaluate the therapy options for lung cancer patients. In this paper, we propose a joint deep learning model where the segmentation can better facilitate the classification of pulmonary GGNs. Based on our observation that masking the nodule to train the model results in better lesion classification, we propose to build a cascade architecture with both segmentation and classification networks. The segmentation model works as a trainable preprocessing module to provide the classification-guided 'attention' weight map to the raw CT data to achieve better diagnosis performance. We evaluate our proposed model and compare with other baseline models for 4 clinically significant nodule classification tasks, defined by a combination of pathology types, using 4 classification metrics: Accuracy, Average F1 Score, Matthews Correlation Coefficient (MCC), and Area Under the Receiver Operating Characteristic Curve (AUC). Experimental results show that the proposed method outperforms other baseline models on all the diagnostic classification tasks.
在诊断 CT 图像上将磨玻璃肺结节(GGNs)分为不典型腺瘤样增生(AAH)、原位腺癌(AIS)、微浸润腺癌(MIA)和浸润性腺癌(IAC),对于评估肺癌患者的治疗选择非常重要。在本文中,我们提出了一种联合深度学习模型,其中分割可以更好地促进肺 GGN 的分类。基于我们的观察,掩蔽结节来训练模型可以导致更好的病变分类,我们提出构建一个具有分割和分类网络的级联架构。分割模型作为一个可训练的预处理模块,为原始 CT 数据提供分类引导的“注意力”权重图,以实现更好的诊断性能。我们评估了所提出的模型,并与其他基线模型进行比较,用于通过病理类型组合定义的 4 个临床重要的结节分类任务,使用 4 个分类指标:准确性、平均 F1 分数、马修斯相关系数(MCC)和接收器操作特征曲线下的面积(AUC)。实验结果表明,所提出的方法在所有诊断分类任务上均优于其他基线模型。