Suppr超能文献

通过对多种生物标志物进行无标记拉曼检测的计算分析评估肾性骨营养不良

Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers.

作者信息

Manciu Marian, Cardenas Mario, Bennet Kevin E, Maran Avudaiappan, Yaszemski Michael J, Maldonado Theresa A, Magiricu Diana, Manciu Felicia S

机构信息

Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.

Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.

出版信息

Diagnostics (Basel). 2020 Jan 31;10(2):79. doi: 10.3390/diagnostics10020079.

Abstract

Accurate clinical evaluation of renal osteodystrophy (ROD) is currently accomplished using invasive in vivo transiliac bone biopsy, followed by in vitro histomorphometry. In this study, we demonstrate that an alternative method for ROD assessment is through a fast, label-free Raman recording of multiple biomarkers combined with computational analysis for predicting the minimally required number of spectra for sample classification at defined accuracies. Four clinically relevant biomarkers: the mineral-to-matrix ratio, the carbonate-to-matrix ratio, phenylalanine, and calcium contents were experimentally determined and simultaneously considered as input to a linear discriminant analysis (LDA). Additionally, sample evaluation was performed with a linear support vector machine (LSVM) algorithm, with a 300 variable input. The computed probabilities based on a single spectrum were only marginally different (~80% from LDA and ~87% from LSVM), both providing an unacceptable classification power for a correct sample assignment. However, the Type I and Type II assignment errors confirm that a relatively small number of independent spectra (7 spectra for Type I and 5 spectra for Type II) is necessary for a < 0.05 error probability. This low number of spectra supports the practicality of future in vivo Raman translation for a fast and accurate ROD detection in clinical settings.

摘要

目前,肾性骨营养不良(ROD)的准确临床评估是通过侵入性的体内髂骨活检,随后进行体外组织形态计量学来完成的。在本研究中,我们证明了一种评估ROD的替代方法,即通过对多种生物标志物进行快速、无标记的拉曼记录,并结合计算分析来预测在规定准确度下进行样本分类所需的最少光谱数量。通过实验确定了四种临床相关生物标志物:矿物质与基质的比率、碳酸盐与基质的比率、苯丙氨酸和钙含量,并将其同时作为线性判别分析(LDA)的输入。此外,使用具有300个变量输入的线性支持向量机(LSVM)算法进行样本评估。基于单个光谱计算出的概率仅有微小差异(LDA约为80%,LSVM约为87%),两者对于正确的样本分类都提供了不可接受的分类能力。然而,I型和II型分类错误证实,对于误差概率<0.05而言,相对少量的独立光谱(I型为7个光谱,II型为5个光谱)是必要的。如此少量的光谱支持了未来在临床环境中进行快速准确的ROD检测的体内拉曼转换的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验