Zhu Lingxin, Tang Yi, Li Xiao-Yan, Keller Evan T, Yang Jingwen, Cho Jung-Sun, Feinberg Tamar Y, Weiss Stephen J
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Sci Transl Med. 2020 Feb 5;12(529). doi: 10.1126/scitranslmed.aaw6143.
Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K-null mice, as well as cathepsin K-mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K-independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of and inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, / conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone- or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.
在正常生长发育以及从骨质疏松到骨转移等病理状态下,破骨细胞会积极重塑骨骼的矿物质和蛋白质成分。半胱氨酸蛋白酶组织蛋白酶K赋予破骨细胞强大的I型胶原溶解活性;然而,组织蛋白酶K基因敲除小鼠以及组织蛋白酶K突变的人类,仍可通过尚未明确的效应物继续重塑骨骼并降解胶原蛋白。在此,我们在破骨细胞中鉴定出一种不依赖组织蛋白酶K的胶原溶解系统,该系统由分泌型基质金属蛋白酶MMP9和膜锚定基质金属蛋白酶MMP14组成的功能冗余网络构成。出乎意料的是,单独缺失其中任何一种蛋白酶都能使骨吸收保持完整,但同时靶向MMP9和MMP14则会在体外和体内抑制小鼠破骨细胞以及体外人破骨细胞的吸收活性。在体内,MMP9/MMP14条件性双敲除小鼠的骨密度显著增加,并且对甲状旁腺激素或卵巢切除诱导的病理性骨质流失具有高度的保护作用。总之,这些研究描述了在小鼠和人类破骨细胞中起作用的胶原溶解系统,并确定MMP9/MMP14轴是治疗骨质流失疾病状态的潜在治疗靶点。