Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
Nat Commun. 2020 Feb 5;11(1):715. doi: 10.1038/s41467-020-14605-5.
Copy number alterations (CNAs) can promote tumor progression by altering gene expression levels. Due to transcriptional adaptive mechanisms, however, CNAs do not always translate proportionally into altered expression levels. By reanalyzing >34,000 gene expression profiles, we reveal the degree of transcriptional adaptation to CNAs in a genome-wide fashion, which strongly associate with distinct biological processes. We then develop a platform-independent method-transcriptional adaptation to CNA profiling (TACNA profiling)-that extracts the transcriptional effects of CNAs from gene expression profiles without requiring paired CNA profiles. By applying TACNA profiling to >28,000 patient-derived tumor samples we define the landscape of transcriptional effects of CNAs. The utility of this landscape is demonstrated by the identification of four genes that are predicted to be involved in tumor immune evasion when transcriptionally affected by CNAs. In conclusion, we provide a novel tool to gain insight into how CNAs drive tumor behavior via altered expression levels.
拷贝数改变(CNAs)可以通过改变基因表达水平来促进肿瘤的进展。然而,由于转录适应性机制,CNAs 并不总是成比例地转化为改变的表达水平。通过重新分析超过 34000 个基因表达谱,我们以全基因组的方式揭示了转录对 CNA 的适应性程度,这与不同的生物学过程密切相关。然后,我们开发了一种与平台无关的方法——转录适应于 CNA 分析(TACNA 分析)——该方法从基因表达谱中提取 CNA 的转录效应,而不需要配对的 CNA 谱。通过将 TACNA 分析应用于超过 28000 个患者来源的肿瘤样本,我们定义了 CNA 转录效应的图谱。通过鉴定四个基因,当它们受到 CNA 的转录影响时,我们证明了这个图谱的实用性,这四个基因被预测与肿瘤免疫逃逸有关。总之,我们提供了一种新的工具,可以深入了解 CNA 如何通过改变表达水平来驱动肿瘤行为。