Suppr超能文献

使用持久同调对时间序列数据进行机器学习。

Machine learning of time series data using persistent homology.

作者信息

Ichinomiya Takashi

机构信息

Gifu University School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan.

The United Graduate School of Drug Discovery and Medical Information Science, Gifu University, Yanagido 1-1, Gifu, 501-1194, Japan.

出版信息

Sci Rep. 2025 Jul 1;15(1):20508. doi: 10.1038/s41598-025-06551-3.

Abstract

This study proposes a novel method for time-series analysis based on persistent homology. Traditional time-series analysis techniques based on persistent homology often involve high computational costs. To address this challenge, we introduce the use of recurrence plots. In our approach, recurrence plots are first generated from the datasets, and topological information is then extracted from these plots using persistent homology. The obtained topological information are vectorized through persistence image and the resulting vectors are further reduced using non-negative matrix factorization. The features derived from this method encapsulate rich and distinctive information inherent in the dataset. We applied the proposed approach to several synthetic and experimental datasets to demonstrate its effectiveness. Our method successfully identified the periodic-to-chaotic and chaotic-to-chaotic transitions in Chua's system and revealed distinguishing characteristics in electromyograms from healthy, neuropathic, and myopathic individuals. Additionally, the extracted features enabled accurate classification of electrocardiogram data. Overall, the results indicate that the features obtained through this method capture essential information embedded in time-series data.

摘要

本研究提出了一种基于持久同调的时间序列分析新方法。传统的基于持久同调的时间序列分析技术通常计算成本很高。为应对这一挑战,我们引入了递归图的使用。在我们的方法中,首先从数据集中生成递归图,然后使用持久同调从这些图中提取拓扑信息。通过持久图像将获得的拓扑信息向量化,并使用非负矩阵分解进一步简化所得向量。从该方法导出的特征封装了数据集中固有的丰富且独特的信息。我们将所提出的方法应用于几个合成数据集和实验数据集,以证明其有效性。我们的方法成功识别了蔡氏系统中的周期到混沌和混沌到混沌的转变,并揭示了健康、神经病变和肌病个体肌电图的显著特征。此外,提取的特征能够对心电图数据进行准确分类。总体而言,结果表明通过该方法获得的特征捕获了时间序列数据中嵌入的基本信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/12219089/1dfbfa562b76/41598_2025_6551_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验