Rizvi Abbas H, Camara Pablo G, Kandror Elena K, Roberts Thomas J, Schieren Ira, Maniatis Tom, Rabadan Raul
Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, USA.
The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA.
Nat Biotechnol. 2017 Jun;35(6):551-560. doi: 10.1038/nbt.3854. Epub 2017 May 1.
Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding of cell fate has been advanced by studying single-cell RNA-sequencing (RNA-seq) but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Unlike other methods, scTDA is a nonlinear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins, and long noncoding RNAs (lncRNAs). scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations.
转录程序在发育过程中控制细胞谱系的定向分化。通过研究单细胞RNA测序(RNA-seq),人们对细胞命运的理解有了进展,但目前的分析方法对数据结构的假设限制了这一进展。我们提出了单细胞拓扑数据分析(scTDA),这是一种基于拓扑的计算分析算法,用于研究时间上无偏倚的转录调控。与其他方法不同,scTDA是一个非线性、独立于模型的无监督统计框架,能够表征瞬时细胞状态。我们将scTDA应用于体外小鼠胚胎干细胞(mESC)对运动神经元分化诱导剂的分化分析。scTDA解析了细胞身份随时间的异步性和连续性,并基于转录因子、RNA结合蛋白和长链非编码RNA(lncRNA)的阶段依赖性组合变化,识别出四种瞬时状态(多能、前体、祖细胞和完全分化细胞)。scTDA可用于研究细胞对发育线索或环境扰动的异步反应。