Zheng Shoujun, Jo Sanghyun, Kang Kyungrok, Sun Linfeng, Zhao Mali, Watanabe Kenji, Taniguchi Takashi, Moon Pilkyung, Myoung Nojoon, Yang Heejun
Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Korea.
Samsung Advanced Institute of Technology, Suwon, 16678, Korea.
Adv Mater. 2020 Mar;32(12):e1906942. doi: 10.1002/adma.201906942. Epub 2020 Feb 6.
Each atomic layer in van der Waals heterostructures possesses a distinct electronic band structure that can be manipulated for unique device operations. In the precise device architecture, the subtle but critical band splits by the giant Stark effect between atomic layers, varied by the momentum of electrons and external electric fields in device operation, has not yet been demonstrated or applied to design original devices with the full potential of atomically thin materials. Here, resonant tunneling spectroscopy based on the negligible quantum capacitance of 2D semiconductors in resonant tunneling transistors is reported. The bandgaps and sub-band structures of various channel materials could be demonstrated by the new conceptual spectroscopy at the device scale without debatable quasiparticle effects. Moreover, the band splits by the giant Stark effect in the channel materials could be probed, overcoming the limitations of conventional optical, photoemission, and tunneling spectroscopy. The resonant tunneling spectroscopy reveals essential and practical information for novel device applications.
范德华异质结构中的每个原子层都具有独特的电子能带结构,可对其进行操控以实现独特的器件操作。在精确的器件架构中,原子层之间由巨大斯塔克效应引起的微妙而关键的能带分裂,会因器件操作中电子的动量和外部电场而变化,目前尚未得到证实,也未应用于利用原子级薄材料的全部潜力来设计原创器件。在此,报道了基于共振隧穿晶体管中二维半导体可忽略的量子电容的共振隧穿光谱。通过这种新的概念性光谱,可以在器件尺度上展示各种沟道材料的带隙和子带结构,而不会受到有争议的准粒子效应的影响。此外,还可以探测沟道材料中由巨大斯塔克效应引起的能带分裂,克服了传统光学、光发射和隧穿光谱的局限性。共振隧穿光谱为新型器件应用揭示了重要且实用的信息。