Zhou Chengjie, Li Hui, Huang Zhenqiao, Wan Chun Yu, Jin Zijing, Liu Junwei, Wang Jiannong
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
National Key Laboratory of Optoelectronic Information Acquisition and Protection Technology and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
ACS Appl Mater Interfaces. 2025 Apr 30;17(17):25915-25921. doi: 10.1021/acsami.4c21712. Epub 2025 Apr 15.
Experimental determination of band structures of monolayer transition metal dichalcogenides (TMDCs) is crucially important in the design and tailoring of the properties of TMDCs. Resonant tunneling spectroscopy (RTS) is an effective technique to probe the band structures of low-dimensional systems by measuring the density of states (DOS) and energy dispersions. Here, we report the investigation of the band structure of monolayer MoS (ML-MoS) in a gate-controlled resonant tunneling diode. Three distinct resonant tunneling kinks are observed in the characteristic current-voltage curves at 0.47, 0.70, and 0.81 V, respectively, which correspond to the conduction band local minimum of ML-MoS at K, Q, and Q points. When applying a large positive gate voltage to enhance ML-MoS conductivity, the three resonant kinks shift to lower bias at 0.10, 0.32, and 0.39 V, respectively, which is in excellent agreement with the theoretical calculations. Our work offers an effective and more precise way to explore the electronic band structures of TMDCs using RTS.
实验测定单层过渡金属二硫属化物(TMDCs)的能带结构对于TMDCs性质的设计和定制至关重要。共振隧穿光谱(RTS)是一种通过测量态密度(DOS)和能量色散来探测低维系统能带结构的有效技术。在此,我们报告了在栅极控制的共振隧穿二极管中对单层MoS(ML-MoS)能带结构的研究。在特征电流-电压曲线中分别在0.47、0.70和0.81 V处观察到三个不同的共振隧穿扭折,它们分别对应于ML-MoS在K、Q和Q点处的导带局部最小值。当施加较大的正栅极电压以增强ML-MoS的导电性时,这三个共振扭折分别移至0.10、0.32和0.39 V的较低偏压处,这与理论计算结果非常吻合。我们的工作提供了一种使用RTS探索TMDCs电子能带结构的有效且更精确的方法。