Suppr超能文献

基于深度学习的皮肤病变分析,使用混合ResUNet++和改进的AlexNet-随机森林进行增强分割和分类。

Deep learning-based skin lesion analysis using hybrid ResUNet++ and modified AlexNet-Random Forest for enhanced segmentation and classification.

作者信息

Mustafa Saleem, Jaffar Arfan, Rashid Muhammad, Akram Sheeraz, Bhatti Sohail Masood

机构信息

Faculty of Computer Science & Information Technology, The Superior University, Lahore, Pakistan.

Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan.

出版信息

PLoS One. 2025 Jan 16;20(1):e0315120. doi: 10.1371/journal.pone.0315120. eCollection 2025.

Abstract

Skin cancer is considered globally as the most fatal disease. Most likely all the patients who received wrong diagnosis and low-quality treatment die early. Though if it is detected in the early stages the patient has fairly good chance and the aforementioned diseases can be cured. Consequently, diagnostic identification and management of the patient at this level becomes a rather enormous task. This paper offers a cutting-edge hybrid deep learning approach of better segmentation and classification of skin lesions. The proposed method incorporates three key stages: preprocessing, segmentation of lesions, and classification of lesions. By the stage of preprocessing, a morphology-based technique takes out hair so as to enhance the segmentation precision to use the cleansed images for subsequent analysis. Segmentation cuts off the lesion from the surrounding skin, giving the classification phase a dedicated area of interest and the ability to clear the background noise that may affect classification rates. The isolation enables the model to better analyze anatomical lesion features in order to achieve accurate benign and malignant classifications. Using ResUNet++, the cutting-edge deep learning architecture, we achieved accurate lesion segmentation. Next, we will modify and use an AlexNet-Random Forest (AlexNet-RF) based classifier for robust lesion classification. The proposed hybrid deep learning model is intensively validated on the Ham10000 data set which is one of the most popular datasets for skin lesions analysis. The obtained results show that the utilized approach, compared to the previous ones, is more effective, giving better segmentation and classification results. This method takes advantage of ResUNet++ strong classification skill and modified AlexNet-Random Forest robustness for more accurate segmentation. There is a high probability that ResUNet++, which is highly proficient at medical image segmentation, can produce better segmentation of lesions than the simpler models. The composition of AlexNet's extraction of features with Random Forest ability to reduce overfitting possibly may be more precise in the classification when compared to using only one model.

摘要

皮肤癌在全球被认为是最致命的疾病。很可能所有接受错误诊断和低质量治疗的患者都会过早死亡。不过,如果在早期阶段发现,患者有相当大的机会,上述疾病是可以治愈的。因此,在这个层面上对患者进行诊断识别和管理就成为了一项相当艰巨的任务。本文提出了一种前沿的混合深度学习方法,用于更好地对皮肤病变进行分割和分类。所提出的方法包含三个关键阶段:预处理、病变分割和病变分类。在预处理阶段,一种基于形态学的技术去除毛发,以提高分割精度,以便将清理后的图像用于后续分析。分割将病变与周围皮肤分离,为分类阶段提供一个专门的感兴趣区域,并能够清除可能影响分类率的背景噪声。这种分离使模型能够更好地分析解剖病变特征,从而实现准确的良性和恶性分类。使用前沿的深度学习架构ResUNet++,我们实现了准确的病变分割。接下来,我们将修改并使用基于AlexNet-随机森林(AlexNet-RF)的分类器进行稳健的病变分类。所提出的混合深度学习模型在Ham10000数据集上进行了深入验证,该数据集是皮肤病变分析中最受欢迎的数据集之一。获得的结果表明,与之前的方法相比,所采用的方法更有效,能给出更好的分割和分类结果。该方法利用ResUNet++强大的分类能力和改进的AlexNet-随机森林的稳健性来进行更准确的分割。高度擅长医学图像分割的ResUNet++很有可能比更简单的模型产生更好的病变分割效果。与仅使用一个模型相比,AlexNet的特征提取与随机森林减少过拟合的能力相结合,在分类时可能会更精确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef56/11737724/777528094a6d/pone.0315120.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验