Suppr超能文献

PVPred-SCM:利用评分卡方法改进噬菌体衣壳蛋白的预测和分析。

PVPred-SCM: Improved Prediction and Analysis of Phage Virion Proteins Using a Scoring Card Method.

机构信息

Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.

Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

出版信息

Cells. 2020 Feb 3;9(2):353. doi: 10.3390/cells9020353.

Abstract

Although, existing methods have been successful in predicting phage (or bacteriophage) virion proteins (PVPs) using various types of protein features and complex classifiers, such as support vector machine and naïve Bayes, these two methods do not allow interpretability. However, the characterization and analysis of PVPs might be of great significance to understanding the molecular mechanisms of bacteriophage genetics and the development of antibacterial drugs. Hence, we herein proposed a novel method (PVPred-SCM) based on the scoring card method (SCM) in conjunction with dipeptide composition to identify and characterize PVPs. In PVPred-SCM, the propensity scores of 400 dipeptides were calculated using the statistical discrimination approach. Rigorous independent validation test showed that PVPred-SCM utilizing only dipeptide composition yielded an accuracy of 77.56%, indicating that PVPred-SCM performed well relative to the state-of-the-art method utilizing a number of protein features. Furthermore, the propensity scores of dipeptides were used to provide insights into the biochemical and biophysical properties of PVPs. Upon comparison, it was found that PVPred-SCM was superior to the existing methods considering its simplicity, interpretability, and implementation. Finally, in an effort to facilitate high-throughput prediction of PVPs, we provided a user-friendly web-server for identifying the likelihood of whether or not these sequences are PVPs. It is anticipated that PVPred-SCM will become a useful tool or at least a complementary existing method for predicting and analyzing PVPs.

摘要

虽然现有的方法已经成功地使用各种类型的蛋白质特征和复杂的分类器(如支持向量机和朴素贝叶斯)来预测噬菌体(或噬菌体)衣壳蛋白(PVPs),但这两种方法都不允许可解释性。然而,对 PVPs 的特征描述和分析可能对理解噬菌体遗传学的分子机制和抗菌药物的开发具有重要意义。因此,我们在此提出了一种新的方法(PVPred-SCM),该方法结合了评分卡方法(SCM)和二肽组成,用于识别和表征 PVPs。在 PVPred-SCM 中,使用统计判别方法计算了 400 种二肽的倾向得分。严格的独立验证测试表明,仅使用二肽组成的 PVPred-SCM 产生了 77.56%的准确性,这表明 PVPred-SCM 的性能优于利用多种蛋白质特征的最新方法。此外,二肽的倾向得分被用来深入了解 PVPs 的生化和生物物理特性。通过比较,发现 PVPred-SCM 比现有的方法更简单、更具可解释性和可实现性。最后,为了促进 PVPs 的高通量预测,我们提供了一个用户友好的网络服务器,用于识别这些序列是否是 PVPs 的可能性。预计 PVPred-SCM 将成为预测和分析 PVPs 的有用工具或至少是现有方法的补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3fd/7072630/e93da09966f0/cells-09-00353-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验