Suppr超能文献

CSA-Net:用于乳房X光片和超声图像分类的基于通道和空间注意力的网络

CSA-Net: Channel and Spatial Attention-Based Network for Mammogram and Ultrasound Image Classification.

作者信息

Naeem Osama Bin, Saleem Yasir

机构信息

Department of Electrical Engineering, University of Engineering and Technology, Lahore-Narowal Campus, Narowal 51600, Pakistan.

Department of Computer Engineering, University of Engineering and Technology, Lahore 39161, Pakistan.

出版信息

J Imaging. 2024 Oct 16;10(10):256. doi: 10.3390/jimaging10100256.

Abstract

Breast cancer persists as a critical global health concern, emphasizing the advancement of reliable diagnostic strategies to improve patient survival rates. To address this challenge, a computer-aided diagnostic methodology for breast cancer classification is proposed. An architecture that incorporates a pre-trained EfficientNet-B0 model along with channel and spatial attention mechanisms is employed. The efficiency of leveraging attention mechanisms for breast cancer classification is investigated here. The proposed model demonstrates commendable performance in classification tasks, particularly showing significant improvements upon integrating attention mechanisms. Furthermore, this model demonstrates versatility across various imaging modalities, as demonstrated by its robust performance in classifying breast lesions, not only in mammograms but also in ultrasound images during cross-modality evaluation. It has achieved accuracy of 99.9% for binary classification using the mammogram dataset and 92.3% accuracy on the cross-modality multi-class dataset. The experimental results emphasize the superiority of our proposed method over the current state-of-the-art approaches for breast cancer classification.

摘要

乳腺癌仍然是一个关键的全球健康问题,这凸显了推进可靠诊断策略以提高患者生存率的重要性。为应对这一挑战,提出了一种用于乳腺癌分类的计算机辅助诊断方法。采用了一种结合预训练的EfficientNet-B0模型以及通道和空间注意力机制的架构。在此研究了利用注意力机制进行乳腺癌分类的效率。所提出的模型在分类任务中表现出色,特别是在整合注意力机制后有显著改进。此外,该模型在各种成像模态中都表现出通用性,在跨模态评估中,它在乳腺病变分类中表现稳健,不仅在乳房X光片中,在超声图像中也是如此。使用乳房X光片数据集进行二分类时,它的准确率达到了99.9%,在跨模态多类数据集上的准确率为92.3%。实验结果强调了我们所提出的方法相对于当前乳腺癌分类的最先进方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f47/11508210/48daf660a07f/jimaging-10-00256-g001.jpg

相似文献

本文引用的文献

8
Dataset of breast mammography images with masses.带有肿块的乳腺钼靶图像数据集。
Data Brief. 2020 Jun 25;31:105928. doi: 10.1016/j.dib.2020.105928. eCollection 2020 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验