Lee Gi-Hyeok, Wu Jinpeng, Kim Duho, Cho Kyeongjae, Cho Maenghyo, Yang Wanli, Kang Yong-Mook
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Angew Chem Int Ed Engl. 2020 May 25;59(22):8681-8688. doi: 10.1002/anie.202001349. Epub 2020 Mar 24.
Redox reactions of oxygen have been considered critical in controlling the electrochemical properties of lithium-excessive layered-oxide electrodes. However, conventional electrode materials without overlithiation remain the most practical. Typically, cationic redox reactions are believed to dominate the electrochemical processes in conventional electrodes. Herein, we show unambiguous evidence of reversible anionic redox reactions in LiNi Co Mn O . The typical involvement of oxygen through hybridization with transition metals is discussed, as well as the intrinsic oxygen redox process at high potentials, which is 75 % reversible during initial cycling and 63 % retained after 10 cycles. Our results clarify the reaction mechanism at high potentials in conventional layered electrodes involving both cationic and anionic reactions and indicate the potential of utilizing reversible oxygen redox reactions in conventional layered oxides for high-capacity lithium-ion batteries.
氧的氧化还原反应被认为在控制富锂层状氧化物电极的电化学性能方面至关重要。然而,没有过锂化的传统电极材料仍然是最实用的。通常,阳离子氧化还原反应被认为在传统电极的电化学过程中占主导地位。在此,我们展示了LiNiCoMnO中可逆阴离子氧化还原反应的确凿证据。讨论了氧通过与过渡金属杂化的典型参与情况,以及在高电位下的本征氧氧化还原过程,该过程在初始循环期间75%可逆,在10次循环后保留63%。我们的结果阐明了传统层状电极在高电位下涉及阳离子和阴离子反应的反应机理,并表明在传统层状氧化物中利用可逆氧氧化还原反应用于高容量锂离子电池的潜力。