Institut Curie, PSL Research University, CNRS, UMR3664, 75005 Paris, France; Sorbonne Université, Institut Curie, CNRS, UMR3664, 75005 Paris, France.
Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
Curr Biol. 2020 Feb 24;30(4):561-572.e10. doi: 10.1016/j.cub.2019.12.014. Epub 2020 Feb 6.
Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. In most eukaryotes, kinetochore assembly is primed by the histone H3 variant CenH3 (also called CENP-A), which physically interacts with components of the inner kinetochore constitutive centromere-associated network (CCAN). Unexpectedly, regarding its critical function, previous work identified that select eukaryotic lineages, including several insects, have lost CenH3 while having retained homologs of the CCAN. These findings imply alternative CCAN assembly pathways in these organisms that function in CenH3-independent manners. Here we study the composition and assembly of CenH3-deficient kinetochores of Lepidoptera (butterflies and moths). We show that lepidopteran kinetochores consist of previously identified CCAN homologs as well as additional components, including a divergent CENP-T homolog, that are required for accurate mitotic progression. Our study focuses on CENP-T, which we found to be sufficient to recruit the Mis12 and Ndc80 outer kinetochore complexes. In addition, CRISPR-mediated gene editing in Bombyx mori establishes an essential function of CENP-T in vivo. Finally, the retention of CENP-T and additional CCAN homologs in other independently derived CenH3-deficient insects indicates a conserved mechanism of kinetochore assembly between these lineages. Our study provides the first functional insights into CCAN-based kinetochore assembly pathways that function independently of CenH3, contributing to the emerging picture of an unexpected plasticity to build a kinetochore.
准确的染色体分离需要在着丝粒处组装多功能的着丝粒蛋白复合物。在大多数真核生物中,着丝粒组装是由组蛋白 H3 变体 CenH3(也称为 CENP-A)启动的,它与着丝粒内固有着丝粒相关网络(CCAN)的成分发生物理相互作用。出乎意料的是,考虑到其关键功能,先前的工作表明,包括几种昆虫在内的一些真核生物谱系已经失去了 CenH3,但保留了 CCAN 的同源物。这些发现表明,这些生物中存在替代的 CCAN 组装途径,它们以 CenH3 非依赖性的方式发挥作用。在这里,我们研究了鳞翅目(蝴蝶和飞蛾)中 CenH3 缺失的着丝粒的组成和组装。我们表明,鳞翅目动物的着丝粒由先前鉴定的 CCAN 同源物以及其他成分组成,包括一个分化的 CENP-T 同源物,这些成分对于准确的有丝分裂进展是必需的。我们的研究集中在 CENP-T 上,我们发现它足以募集 Mis12 和 Ndc80 外着丝粒复合物。此外,在 Bombyx mori 中通过 CRISPR 介导的基因编辑确立了 CENP-T 在体内的必需功能。最后,CENP-T 和其他 CCAN 同源物在其他独立衍生的 CenH3 缺失昆虫中的保留表明,这些谱系之间的着丝粒组装机制是保守的。我们的研究提供了第一个关于 CCAN 为基础的着丝粒组装途径的功能见解,这些途径独立于 CenH3 发挥作用,有助于构建着丝粒的意想不到的可塑性的新兴图景。