Institut Curie, PSL Research University, CNRS, UMR3664, 75005 Paris, France; Sorbonne Université, Institut Curie, CNRS, UMR3664, 75005 Paris, France.
Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA 94305-5307, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA.
Curr Biol. 2021 Jan 11;31(1):173-181.e7. doi: 10.1016/j.cub.2020.09.078. Epub 2020 Oct 29.
Despite the essentiality for faithful chromosome segregation, centromere architectures are diverse among eukaryotes and embody two main configurations: mono- and holocentromeres, referring, respectively, to localized or unrestricted distribution of centromeric activity. Of the two, some holocentromeres offer the curious condition of having arisen independently in multiple insects, most of which have lost the otherwise essential centromere-specifying factor CenH3 (first described as CENP-A in humans). The loss of CenH3 raises intuitive questions about how holocentromeres are organized and regulated in CenH3-lacking insects. Here, we report the first chromatin-level description of CenH3-deficient holocentromeres by leveraging recently identified centromere components and genomics approaches to map and characterize the holocentromeres of the silk moth Bombyx mori, a representative lepidopteran insect lacking CenH3. This uncovered a robust correlation between the distribution of centromere sites and regions of low chromatin activity along B. mori chromosomes. Transcriptional perturbation experiments recapitulated the exclusion of B. mori centromeres from active chromatin. Based on reciprocal centromere occupancy patterns observed along differentially expressed orthologous genes of Lepidoptera, we further found that holocentromere formation in a manner that is recessive to chromatin dynamics is evolutionarily conserved. Our results help us discuss the plasticity of centromeres in the context of a role for the chromosome-wide chromatin landscape in conferring centromere identity rather than the presence of CenH3. Given the co-occurrence of CenH3 loss and holocentricity in insects, we further propose that the evolutionary establishment of holocentromeres in insects was facilitated through the loss of a CenH3-specified centromere.
尽管对于忠实的染色体分离至关重要,但着丝粒结构在真核生物中是多种多样的,体现了两种主要的构型:单着丝粒和着丝粒,分别指着丝粒活性的局部或无限制分布。在这两种构型中,一些着丝粒具有在多种昆虫中独立出现的奇特条件,其中大多数昆虫已经失去了否则必不可少的着丝粒指定因子 CenH3(最初在人类中被描述为 CENP-A)。CenH3 的缺失引发了关于在缺乏 CenH3 的昆虫中如何组织和调节着丝粒的直观问题。在这里,我们通过利用最近鉴定的着丝粒成分和基因组学方法来报告首次对 CenH3 缺失的着丝粒进行染色质水平描述,以绘制和表征缺乏 CenH3 的丝蛾 Bombyx mori 的着丝粒,这是一种代表性的鳞翅目昆虫。这揭示了着丝粒位点的分布与 B. mori 染色体上低染色质活性区域之间存在很强的相关性。转录扰动实验再现了 B. mori 着丝粒从活性染色质中的排除。基于在鳞翅目同源基因的差异表达中观察到的相互着丝粒占据模式,我们进一步发现,着丝粒的形成以对染色质动态呈隐性方式在进化上是保守的。我们的研究结果有助于我们在染色体广泛的染色质景观赋予着丝粒身份的作用背景下讨论着丝粒的可塑性,而不是 CenH3 的存在。鉴于 CenH3 缺失和全着丝粒在昆虫中的共同发生,我们进一步提出,昆虫中全着丝粒的进化建立是通过 CenH3 指定的着丝粒的缺失而实现的。