Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
Department of Molecular, Cell and Developmental Biology, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
Nat Commun. 2020 Feb 7;11(1):764. doi: 10.1038/s41467-020-14629-x.
Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.
尽管早期人类发育的信号通路具有重要的生物学意义,但我们对其的了解十分有限。在这里,我们挖掘了转录组数据集,以研究人类胚胎中的信号通路,并鉴定出胰岛素和胰岛素生长因子 1 (IGF1) 受体以及 IGF1 配体的表达。因此,我们生成了一种最小的化学定义培养基于其中 IGF1 与激活素在没有成纤维细胞生长因子 (FGF) 信号的情况下维持自我更新。在这些条件下,我们获得了多个多能干细胞系,这些细胞系表达多能性相关基因,保持高活力和正常核型,并可进行基因修饰或分化为多种细胞谱系。我们还在早期人类胚胎以及原始和幼稚的多能培养条件中鉴定出了活性磷酸肌醇 3-激酶 (PI3K)/AKT/mTOR 信号通路。这表明,来自人类囊胚的信号通路见解可用于定义更能模拟胚胎微环境的培养条件。