Suppr超能文献

在胁迫条件下,抑制杆菌属细菌中不依赖DmdA的延滞期缩短。

DmdA-independent lag phase shortening in Phaeobacter inhibens bacteria under stress conditions.

作者信息

Narváez-Barragán Delia A, Sperfeld Martin, Segev Einat

机构信息

Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.

出版信息

FEBS J. 2025 Aug;292(16):4232-4253. doi: 10.1111/febs.70128. Epub 2025 May 3.

Abstract

Bacteria can shorten their lag phase by using methyl groups from compounds like dimethylsulfoniopropionate (DMSP), which are incorporated into cellular components via the methionine cycle. However, the role of specific methionine synthases in this process is not fully understood. Using transcriptomics, genetics, and biochemical assays, we investigated methionine synthases involved in lag phase shortening in Phaeobacter inhibens. We focused on a cobalamin-dependent methionine synthase (MetH)-like complex encoded by three genes: a betaine-homocysteine S-methyltransferase (bmt), a cobalamin-binding protein (cbp), and an intermediate methyl carrier (PGA1_c16040). Expression profiling revealed transcriptional decoupling among these genes. Deleting bmt disrupted lag phase shortening in response to DMSP. Functional assays showed that Bmt can directly produce methionine from DMSP and betaine, independent of tetrahydrofolate (THF) or cobalamin. Interestingly, under stress conditions, lag phase shortening occurred even in the absence of dimethylsulfoniopropionate demethylase DmdA, the primary DMSP demethylase. Under osmotic and oxidative stress, bmt expression increased significantly in response to both DMSP and betaine, suggesting an alternative methylation route. This highlights the role of Bmt as both demethylase and a methionine synthase under stress, offering a cost-effective strategy for methyl group assimilation. Our findings reveal a novel stress-responsive pathway for methionine synthesis and demonstrate the role of Bmt in promoting bacterial adaptation by accelerating the lag phase.

摘要

细菌可以通过利用二甲基巯基丙酸内盐(DMSP)等化合物中的甲基来缩短其延滞期,这些甲基通过甲硫氨酸循环被整合到细胞成分中。然而,特定甲硫氨酸合成酶在这一过程中的作用尚未完全明确。我们运用转录组学、遗传学和生化分析方法,研究了抑制嗜盐菌中参与延滞期缩短的甲硫氨酸合成酶。我们聚焦于一个由三个基因编码的钴胺素依赖性甲硫氨酸合成酶(MetH)样复合物:一个甜菜碱 - 高半胱氨酸S - 甲基转移酶(bmt)、一个钴胺素结合蛋白(cbp)和一个中间甲基载体(PGA1_c16040)。表达谱分析揭示了这些基因之间的转录解偶联。删除bmt会破坏对DMSP响应时的延滞期缩短。功能分析表明,Bmt可以直接从DMSP和甜菜碱产生甲硫氨酸,独立于四氢叶酸(THF)或钴胺素。有趣的是,在应激条件下,即使没有主要的DMSP去甲基酶二甲基巯基丙酸内盐去甲基酶DmdA,延滞期缩短也会发生。在渗透和氧化应激下,bmt的表达在对DMSP和甜菜碱的响应中均显著增加,表明存在一条替代的甲基化途径。这突出了Bmt在应激条件下作为去甲基酶和甲硫氨酸合成酶的作用,为甲基同化提供了一种经济高效的策略。我们的研究结果揭示了一条新的甲硫氨酸合成应激反应途径,并证明了Bmt通过加速延滞期促进细菌适应的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8372/12366255/ffc8055238bd/FEBS-292-4232-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验