Suppr超能文献

用手性生物分子选择性调控晶体生长得到高强度 Brushite 生物陶瓷。

High strength brushite bioceramics obtained by selective regulation of crystal growth with chiral biomolecules.

机构信息

Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada; Faculty of Dentistry, Benghazi University, Benghazi, 9504, Libya.

Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, 300072, PR China.

出版信息

Acta Biomater. 2020 Apr 1;106:351-359. doi: 10.1016/j.actbio.2020.01.047. Epub 2020 Feb 5.

Abstract

Chirality seems to play a key role in mineralization. Indeed, in biominerals, the biomolecules that guide the formation and organization of inorganic crystals and help construct materials with exceptional mechanical properties, are homochiral. Here, we show that addition of homochiral l-(+)-tartaric acid improved the mechanical properties of brushite bioceramics by decreasing their crystal size, following the classic Hall-Petch strengthening effect; d-(-)-tartaric acid had the opposite effect. Adding l-(+)-Tar increased both the compressive strength (26 MPa) and the fracture toughness (0.3 MPa m) of brushite bioceramics, by 33% and 62%, respectively, compared to brushite bioceramics without additives. In addition, l-(+)-tartaric acid enabled the fabrication of cements with high powder-to-liquid ratios, reaching a compressive strength and fracture toughness as high as 32.2 MPa and 0.6 MPa m, respectively, approximately 62% and 268% higher than that of brushite bioceramics prepared without additives, respectively. Characterization of brushite crystals from the macro- to the atomic-level revealed that this regulation is attributable to a stereochemical matching between l-(+)-tartaric acid and the chiral steps of brushite crystals, which results in inhibition of brushite crystallization. These findings provide insight into understanding the role of chirality in mineralization, and how to control the crystallographic structure of bioceramics to achieve high-performance mechanical properties. STATEMENT OF SIGNIFICANCE: Calcium-phosphate cements are promising bone repair materials. However, their suboptimal mechanical properties limit their clinical use. Natural biominerals have remarkable mechanical properties that are the result of controlled size, shape and organization of their inorganic crystals. This is achieved by biomineralization proteins that are homochiral, composed of l- amino acids. Despite the importance of chiral l-biomolecules in biominerals, using homochiral molecules to fabricate bone cements has not been studied yet. In this study, we showed that homochiral l-(+)-tartaric acid can regulate the crystal structure and improve the mechanical properties of a calcium-phosphate cement. Hence, these findings open the door for a new way of designing strong bone cement and highlight the importance of chirality in bioceramics.

摘要

手性似乎在矿化中起着关键作用。事实上,在生物矿物中,引导无机晶体形成和组织并有助于构建具有特殊机械性能的材料的生物分子是手性的。在这里,我们表明,添加手性 l-(+)-酒石酸通过减小其晶体尺寸,遵循经典的 Hall-Petch 强化效应,可改善磷酸氢钙生物陶瓷的机械性能;d-(-)-酒石酸则有相反的效果。与不含添加剂的磷酸氢钙生物陶瓷相比,添加 l-(+)-酒石酸可使磷酸氢钙生物陶瓷的抗压强度(26 MPa)和断裂韧性(0.3 MPa·m)分别提高 33%和 62%,分别达到 26.2 MPa 和 0.3 MPa·m。此外,l-(+)-酒石酸能够制备高固液比的水泥,达到高达 32.2 MPa 和 0.6 MPa·m 的抗压强度和断裂韧性,分别比不含添加剂的磷酸氢钙生物陶瓷分别提高约 62%和 268%。从宏观到原子级对磷酸氢钙晶体的特性进行了表征,结果表明这种调节归因于 l-(+)-酒石酸与磷酸氢钙晶体的手性台阶之间的立体化学匹配,从而抑制了磷酸氢钙的结晶。这些发现为理解手性在矿化中的作用以及如何控制生物陶瓷的晶体结构以获得高性能机械性能提供了深入的了解。 意义声明:钙磷酸盐水泥是有前途的骨修复材料。然而,其不理想的机械性能限制了它们的临床应用。天然生物矿物具有出色的机械性能,这是通过控制其无机晶体的大小、形状和组织实现的。这是通过手性的生物矿化蛋白来实现的,这些蛋白由 l-氨基酸组成。尽管手性 l-生物分子在生物矿物中的重要性,但尚未研究使用手性分子来制备骨水泥。在这项研究中,我们表明手性 l-(+)-酒石酸可以调节钙磷酸盐水泥的晶体结构并提高其机械性能。因此,这些发现为设计坚固的骨水泥开辟了新途径,并强调了手性在生物陶瓷中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验