Suppr超能文献

KLT 拾取器:基于数据驱动的最优模板的粒子拾取。

KLT picker: Particle picking using data-driven optimal templates.

机构信息

Department of Applied Mathematics, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.

Department of Mathematics, Yale University, 10 Hillhouse Ave, New Haven, USA.

出版信息

J Struct Biol. 2020 May 1;210(2):107473. doi: 10.1016/j.jsb.2020.107473. Epub 2020 Feb 7.

Abstract

Particle picking is currently a critical step in the cryo-EM single particle reconstruction pipeline. Despite extensive work on this problem, for many data sets it is still challenging, especially for low SNR micrographs. We present the KLT (Karhunen Loeve Transform) picker, which is fully automatic and requires as an input only the approximated particle size. In particular, it does not require any manual picking. Our method is designed especially to handle low SNR micrographs. It is based on learning a set of optimal templates through the use of multi-variate statistical analysis via the Karhunen Loeve Transform. We evaluate the KLT picker on publicly available data sets and present high-quality results with minimal manual effort.

摘要

粒子挑选是目前低温电子显微镜单颗粒重构管道中的关键步骤。尽管在这个问题上已经进行了广泛的研究,但对于许多数据集来说,它仍然具有挑战性,特别是对于低 SNR 显微照片。我们提出了 KLT(Karhunen-Loeve Transform)拾取器,它是完全自动的,只需要近似的粒子大小作为输入。特别是,它不需要任何手动挑选。我们的方法专门设计用于处理低 SNR 显微照片。它基于通过使用 Karhunen-Loeve Transform 通过多变量统计分析来学习一组最佳模板。我们在公开可用的数据集上评估 KLT 拾取器,并以最小的人工努力呈现高质量的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验