Suppr超能文献

迈向无需粒子挑选的单粒子重建:突破检测极限。

Toward Single Particle Reconstruction without Particle Picking: Breaking the Detection Limit.

作者信息

Bendory Tamir, Boumal Nicolas, Leeb William, Levin Eitan, Singer Amit

机构信息

The School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

Institute of Mathematics, Ecole Polytechnique Fédérale DE Lausanne EPFL, 1015 Lausanne, Switzerland.

出版信息

SIAM J Imaging Sci. 2023;16(2):886-910. doi: 10.1137/22m1503828.

Abstract

Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method to resolve biological macromolecules. In a cryo-EM experiment, the microscope produces images called micrographs. Projections of the molecule of interest are embedded in the micrographs at unknown locations, and under unknown viewing directions. Standard imaging techniques first locate these projections (detection) and then reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When reliable detection is rendered impossible, the standard techniques fail. This is a problem, especially for small molecules. In this paper, we pursue a radically different approach: we contend that the structure could, in principle, be reconstructed directly from the micrographs, without intermediate detection. The aim is to bring small molecules within reach for cryo-EM. To this end, we design an autocorrelation analysis technique that allows one to go directly from the micrographs to the sought structures. This involves only one pass over the micrographs, allowing online, streaming processing for large experiments. We show numerical results and discuss challenges that lay ahead to turn this proof-of-concept into a complementary approach to state-of-the-art algorithms.

摘要

单颗粒冷冻电子显微镜技术(cryo-EM)最近已成为一种用于解析生物大分子结构的高分辨率结构方法,与X射线晶体学和核磁共振光谱技术并列。在冷冻电子显微镜实验中,显微镜会生成称为显微照片的图像。感兴趣分子的投影以未知位置和未知观察方向嵌入在显微照片中。标准成像技术首先定位这些投影(检测),然后从它们重建三维结构。不幸的是,高噪声水平阻碍了检测。当无法进行可靠检测时,标准技术就会失效。这是一个问题,尤其是对于小分子而言。在本文中,我们采用了一种截然不同的方法:我们认为原则上可以直接从显微照片重建结构,而无需中间检测步骤。目的是使小分子也能通过冷冻电子显微镜进行研究。为此,我们设计了一种自相关分析技术,该技术可以直接从显微照片得到所需的结构。这只需要对显微照片进行一次遍历,允许对大型实验进行在线流式处理。我们展示了数值结果,并讨论了将这一概念验证转化为现有算法的补充方法所面临的挑战。

相似文献

1
Toward Single Particle Reconstruction without Particle Picking: Breaking the Detection Limit.
SIAM J Imaging Sci. 2023;16(2):886-910. doi: 10.1137/22m1503828.
2
Random conical tilt reconstruction without particle picking in cryo-electron microscopy.
Acta Crystallogr A Found Adv. 2022 Jul 1;78(Pt 4):294-301. doi: 10.1107/S2053273322005071. Epub 2022 Jun 24.
3
CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM Micrographs.
bioRxiv. 2023 Oct 23:2023.10.19.563155. doi: 10.1101/2023.10.19.563155.
4
5
A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM.
Genes (Basel). 2019 Aug 30;10(9):666. doi: 10.3390/genes10090666.
6
A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.
BMC Bioinformatics. 2017 Jul 21;18(1):348. doi: 10.1186/s12859-017-1757-y.
7
Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules.
Bioinformatics. 2020 Feb 15;36(4):1252-1259. doi: 10.1093/bioinformatics/btz728.
8
Swin-cryoEM: Multi-class cryo-electron micrographs single particle mixed detection method.
PLoS One. 2024 Apr 9;19(4):e0298287. doi: 10.1371/journal.pone.0298287. eCollection 2024.
10
Automatic post-picking using MAPPOS improves particle image detection from cryo-EM micrographs.
J Struct Biol. 2013 May;182(2):59-66. doi: 10.1016/j.jsb.2013.02.008. Epub 2013 Feb 21.

引用本文的文献

1
Multi-target detection with application to cryo-electron microscopy.
Inverse Probl. 2019 Oct;35(10). doi: 10.1088/1361-6420/ab2aec. Epub 2019 Sep 4.
2
MULTI-TARGET DETECTION WITH ROTATIONS.
Inverse Probl Imaging (Springfield). 2023 Apr;17(2):362-380. doi: 10.3934/ipi.2022046.
3
Structure determination using high-order spatial correlations in single-particle X-ray scattering.
IUCrJ. 2024 Jan 1;11(Pt 1):92-108. doi: 10.1107/S2052252523009831.
4
Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2216507120. doi: 10.1073/pnas.2216507120. Epub 2023 Apr 24.
5
Super-resolution multi-reference alignment.
Inf inference. 2022 Jun;11(2):533-555. doi: 10.1093/imaiai/iaab003. Epub 2021 Feb 18.
6
An approximate expectation-maximization for two-dimensional multi-target detection.
IEEE Signal Process Lett. 2022;29:1087-1091. doi: 10.1109/lsp.2022.3167335. Epub 2022 Apr 13.

本文引用的文献

1
NON-UNIQUE GAMES OVER COMPACT GROUPS AND ORIENTATION ESTIMATION IN CRYO-EM.
Inverse Probl. 2020 Jun;36(6). doi: 10.1088/1361-6420/ab7d2c. Epub 2020 Apr 29.
2
Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2216507120. doi: 10.1073/pnas.2216507120. Epub 2023 Apr 24.
3
Super-resolution multi-reference alignment.
Inf inference. 2022 Jun;11(2):533-555. doi: 10.1093/imaiai/iaab003. Epub 2021 Feb 18.
4
Random conical tilt reconstruction without particle picking in cryo-electron microscopy.
Acta Crystallogr A Found Adv. 2022 Jul 1;78(Pt 4):294-301. doi: 10.1107/S2053273322005071. Epub 2022 Jun 24.
5
An approximate expectation-maximization for two-dimensional multi-target detection.
IEEE Signal Process Lett. 2022;29:1087-1091. doi: 10.1109/lsp.2022.3167335. Epub 2022 Apr 13.
6
A molecular prior distribution for Bayesian inference based on Wilson statistics.
Comput Methods Programs Biomed. 2022 Jun;221:106830. doi: 10.1016/j.cmpb.2022.106830. Epub 2022 Apr 22.
7
Conquer by cryo-EM without physically dividing.
Biochem Soc Trans. 2021 Nov 1;49(5):2287-2298. doi: 10.1042/BST20210360.
8
Computational Methods for Single-Particle Electron Cryomicroscopy.
Annu Rev Biomed Data Sci. 2020 Jul;3:163-190. doi: 10.1146/annurev-biodatasci-021020-093826. Epub 2020 May 4.
9
Wilson statistics: derivation, generalization and applications to electron cryomicroscopy.
Acta Crystallogr A Found Adv. 2021 Sep 1;77(Pt 5):472-479. doi: 10.1107/S205327332100752X. Epub 2021 Aug 20.
10
Multi-target Detection with an Arbitrary Spacing Distribution.
IEEE Trans Signal Process. 2020;68:1589-1601. doi: 10.1109/tsp.2020.2975943. Epub 2020 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验