Bourbousse Clara, Barneche Fredy, Laloi Christophe
Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
Aix Marseille Univ, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, Marseille, France.
Front Plant Sci. 2020 Jan 24;10:1728. doi: 10.3389/fpls.2019.01728. eCollection 2019.
Plants use solar radiation as energy source for photosynthesis. They also take advantage of the information provided by the varying properties of sunlight, such as wavelength, orientation, and periodicity, to trigger physiological and developmental adaptations to a changing environment. After more than a century of research efforts in plant photobiology, multiple light signaling pathways converging onto chromatin-based mechanisms have now been identified, which in some instances play critical roles in plant phenotypic plasticity. In addition to locus-specific changes linked to transcription regulation, light signals impact higher-order chromatin organization. Here, we summarize current knowledge on how light can affect the global composition and the spatial distribution of chromatin domains. We introduce emerging questions on the functional links between light signaling and the epigenome, and further discuss how different chromatin regulatory layers may interconnect during plant adaptive responses to light.
植物利用太阳辐射作为光合作用的能量来源。它们还利用阳光不同特性所提供的信息,如波长、方向和周期性,来触发生理和发育适应变化的环境。经过一个多世纪对植物光生物学的研究努力,现已鉴定出多条汇聚到基于染色质机制的光信号通路,这些通路在某些情况下对植物表型可塑性起着关键作用。除了与转录调控相关的位点特异性变化外,光信号还影响高阶染色质组织。在这里,我们总结了关于光如何影响染色质结构域的整体组成和空间分布的现有知识。我们提出了关于光信号与表观基因组之间功能联系的新问题,并进一步讨论了在植物对光的适应性反应过程中不同染色质调控层可能如何相互连接。