Suppr超能文献

细胞图像分类:比较综述。

Cell Image Classification: A Comparative Overview.

机构信息

Imaging and Data Science Lab, Charlottesville, Virginia, 22903.

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903.

出版信息

Cytometry A. 2020 Apr;97(4):347-362. doi: 10.1002/cyto.a.23984. Epub 2020 Feb 10.

Abstract

Cell image classification methods are currently being used in numerous applications in cell biology and medicine. Applications include understanding the effects of genes and drugs in screening experiments, understanding the role and subcellular localization of different proteins, as well as diagnosis and prognosis of cancer from images acquired using cytological and histological techniques. The article also reviews three main approaches for cell image classification most often used: numerical feature extraction, end-to-end classification with neural networks (NNs), and transport-based morphometry (TBM). In addition, we provide comparisons on four different cell imaging datasets to highlight the relative strength of each method. The results computed using four publicly available datasets show that numerical features tend to carry the best discriminative information for most of the classification tasks. Results also show that NN-based methods produce state-of-the-art results in the dataset that contains a relatively large number of training samples. Data augmentation or the choice of a more recently reported architecture does not necessarily improve the classification performance of NNs in the datasets with limited number of training samples. If understanding and visualization are desired aspects, TBM methods can offer the ability to invert classification functions, and thus can aid in the interpretation of results. These and other comparison outcomes are discussed with the aim of clarifying the advantages and disadvantages of each method. © 2020 International Society for Advancement of Cytometry.

摘要

细胞图像分类方法目前在细胞生物学和医学的众多应用中得到了广泛应用。这些应用包括在筛选实验中了解基因和药物的影响,理解不同蛋白质的作用和亚细胞定位,以及利用细胞学和组织学技术获取的图像进行癌症的诊断和预后。本文还回顾了细胞图像分类最常使用的三种主要方法:数值特征提取、基于神经网络(NN)的端到端分类和基于传输的形态计量学(TBM)。此外,我们还在四个不同的细胞成像数据集上进行了比较,以突出每种方法的相对优势。在使用四个公开可用数据集计算的结果表明,对于大多数分类任务,数值特征往往携带最佳的判别信息。结果还表明,在包含相对大量训练样本的数据集上,基于 NN 的方法可产生最先进的结果。数据扩充或选择最近报告的架构不一定会提高有限数量训练样本数据集的 NN 分类性能。如果理解和可视化是期望的方面,TBM 方法可以提供反转分类函数的能力,从而有助于解释结果。本文旨在阐明每种方法的优缺点,对这些和其他比较结果进行了讨论。© 2020 国际细胞分析学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验